
Enhanced Compiler Bug Isolation via Memoized Search

Junjie Chen∗†
College of Intelligence and

Computing, Tianjin University
China, Tianjin

junjiechen@tju.edu.cn

Haoyang Ma∗
College of Intelligence and

Computing, Tianjin University
China, Tianjin

haoyang_9804@tju.edu.cn

Lingming Zhang
University of Illinois at
Urbana-Champaign
USA, IL, Urbana

lingming@illinois.edu

ABSTRACT
Compiler bugs can be disastrous since they could affect all the soft-
ware systems built on the buggy compilers. Meanwhile, diagnosing
compiler bugs is extremely challenging since usually limited de-
bugging information is available and a large number of compiler
files can be suspicious. More specifically, when compiling a given
bug-triggering test program, hundreds of compiler files are usu-
ally involved, and can all be treated as suspicious buggy files. To
facilitate compiler debugging, in this paper we propose the first
reinforcement compiler bug isolation approach via structural mu-
tation, called RecBi. For a given bug-triggering test program, RecBi
first augments traditional local mutation operators with structural
ones to transform it into a set of passing test programs. Since
not all the passing test programs can help isolate compiler bugs
effectively, RecBi further leverages reinforcement learning to intel-
ligently guide the process of passing test program generation. Then,
RecBi ranks all the suspicious files by analyzing the compiler exe-
cution traces of the generated passing test programs and the given
failing test program following the practice of compiler bug isolation.
The experimental results on 120 real bugs from two most popular C
open-source compilers, i.e., GCC and LLVM, show that RecBi is able
to isolate about 23%/58%/78% bugs within Top-1/Top-5/Top-10 com-
piler files, and significantly outperforms the state-of-the-art com-
piler bug isolation approach by improving 92.86%/55.56%/25.68%
isolation effectiveness in terms of Top-1/Top-5/Top-10 results.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Compilers; • Theory of computation → Reinforce-
ment learning.

KEYWORDS
Compiler Bug Isolation, Fault Localization, Reinforcement Learning

∗Both authors contributed equally to this paper.
†Junjie Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416570

ACM Reference Format:
Junjie Chen, Haoyang Ma, and Lingming Zhang. 2020. Enhanced Com-
piler Bug Isolation via Memoized Search. In 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE ’20), September 21–
25, 2020, Virtual Event, Australia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3324884.3416570

1 INTRODUCTION
Compilers are one of the most fundamental software systems since
almost all software systems (ranging from operating systems, web
browsers, to script code written by end-users) are compiled by
them. Although dedicated efforts have been devoted to ensuring
their quality, compilers are still error-prone due to their extremely
large-scale and complicated codebases [17, 18, 21, 58, 70]. In practice,
compiler bugs are very harmful, and can potentially affect all the
software systems compiled by the buggy compilers. Therefore, it is
essential to detect, isolate, and fix all possible compiler bugs.

In the literature, many approaches have been proposed to au-
tomatically detect compiler bugs [12–14, 18, 19, 28, 58, 66, 70, 75],
but there is limited research efforts dedicated to automated debug-
ging of compiler bugs, such as bug isolation and fixing. That is,
compiler bug isolation and fixing are still a rather tedious and time-
consuming process for modern compilers. In particular, compiler
bug isolation is a more fundamental problem since it also directly
helps with effective compiler bug fixing. Although many automated
bug localization approaches (such as spectrum-based [7, 27, 73],
slicing-based [69], mutation-based [34, 45, 48, 51, 74], and the recent
program-repair-based [9, 46] approaches) have been proposed for
common software systems, these existing approaches can hardly
isolate compiler bugs due to either extremely high costs or poor
effectiveness; please refer to the extensive discussion in a recent
work [16] for more details.

To facilitate compiler bug isolation, Chen et al. [16] proposed
the first approach, named DiWi, which transforms the problem
of compiler bug isolation to the problem of passing test program
generation. More specifically, given a failing test program, DiWi
first generates a set of passing test programs by traditional local
mutation operators (which change minimal program elements such
as modifiers and constants), and then leverages existing bug local-
ization techniques [6, 36] to identify the compiler buggy files by
comparing the execution traces between the generated passing pro-
grams and the given failing test program. Although the generated
passing test programs via DiWi has been demonstrated to perform
better than both developer-written test programs and the test pro-
grams generated by the widely-used compiler fuzzing technique
(i.e., Csmith [70]) for compiler bug isolation [16], DiWi still suffers
from the effectiveness issue. For example, as demonstrated by the

https://doi.org/10.1145/3324884.3416570
https://doi.org/10.1145/3324884.3416570

ASE ’20, September 21–25, 2020, Virtual Event, Australia Junjie Chen, Haoyang Ma, and Lingming Zhang

existing work [16] and our study (to be presented in Section 4.5),
developers using DiWi still need to check about 15 innocent files
before finding the really buggy one on average; about 62.5% studied
bugs cannot be successfully isolated after checking 5 most sus-
picious files recommended by DiWi (please note that in practice,
most developers tend to abort the automated debugging tools if
they cannot localize buggy elements within Top-5 positions [38]).

To further advance state-of-the-art compiler bug isolation, in
this paper, we propose an enhanced compiler bug isolation ap-
proach via memoized search and structural mutation, called RecBi
(Reinforcement compiler Bug isolation). More specifically, since
compiler bugs tend to occur in the components of compiler opti-
mizations that tend to depend on test program structure, for a given
compiler bug with a failing test program, RecBi first augments the
traditional local mutation operators used by DiWi with structural
mutation operators (which change the test program structure by
inserting some control-flow-alerting statements such as branch
and loop statements) to effectively generate similar test programs
that can flip the compiler execution results (i.e., from failing to
passing). This is because traditional local mutation operators usu-
ally have small influence on program structure due to its minor
modification, while structural mutation operators can augment the
ability of changing program structure by effectively altering the
control-flow of test programs and in the meanwhile optimizations
are often involved in compiler bugs and structural mutation is good
at skipping the buggy optimizations. However, not all the generated
passing test programs can facilitate isolating compiler bugs [16],
and thus casually or simply heuristically performing mutations on
the given failing test program may not be effective. Thus, RecBi
further incorporates reinforcement learning [37] (a kind of memo-
ized search), which can effectively learn both historical and future
knowledge, to intelligently guide how to conduct mutation in order
to generate a set of more effective passing test programs during
a given period. Finally, similar to the existing work [7, 16], RecBi
ranks all the suspicious files according to their suspicious scores by
comparing the compiler execution traces between the generated
passing test programs and the given failing program. In a word,
the novelties of RecBi are twofold: 1) it opens a new dimension
for compiler bug isolation via structural mutation; 2) it leverages
reinforcement learning for more intelligent compiler bug isolation.

To evaluate the effectiveness of RecBi, we conducted an extensive
study based on 120 real compiler bugs from GCC [2] and LLVM [4],
which are the most widely-used C compilers in both industry and
academia [16, 41, 58, 70]. Our experimental results show that RecBi
is able to isolate 27, 70, 93, 107 bugs (out of 120 compiler bugs) within
Top-1, Top-5, Top-10, and Top-20 files, respectively. That is, about
23%, 58%, 78%, and 89% bugs can be isolated successfully within
Top-1, Top-5, Top-10, and Top-20 files through RecBi, respectively.
In particular, RecBi substantially outperforms the state-of-the-art
approach DiWi. For example, the improvements of RecBi over DiWi
are up to 92.86%/55.56% in terms of Top-1/Top-5 results, 45.55% in
terms of MFR (Mean First Rank, measuring the effectiveness in
detecting the first buggy file for each bug), and 44.62% in terms of
MAR (Mean Average Rank, measuring the effectiveness in detecting
all the buggy files for each bug). Furthermore, we investigated the
contributions of both major components in RecBi (i.e., structural

1 i n t p r i n t f (c on s t char ∗ , . . .) ;
2 i n t a , b =1 ;
3 i n t main () {
4 i n t i ;
5 f o r (i = 0 ; i < 5 6 ; i ++)
6 f o r (; a ; a−−)
7 ;
8 i n t ∗ c=&b ;
9 i f (∗ c)
10 ∗ c =1%(uns igned i n t) ∗ c | 5 ;
11 p r i n t f ("%d \ n " , b) ;
12 r e t u r n 0 ;
13 }

(a) Failing Program

1 i n t p r i n t f (c on s t char ∗ , . . .) ;
2 i n t a , b =1 ;
3 i n t main () {
4 i n t i ;
5 f o r (i = 0 ; i < 5 6 ; i ++)
6 f o r (; a ; a−−)
7 ;
8 i n t ∗ c=&b ;

9 while(a– –)

10 i f (∗ c)
11 ∗ c =1%(uns igned i n t) ∗ c | 5 ;
12 p r i n t f ("%d \ n " , b) ;
13 r e t u r n 0 ;
14 } (b) Passing Program

Figure 1: GCC Bug 64682

mutation and reinforcement learning for passing test program gen-
eration), as well as the impacts of different RecBi configurations.
To sum up, this paper makes the following main contributions:

• This work opens a new dimension of compiler bug isolation
via structural mutation, i.e., leveraging carefully designed
structural mutation operators for generating passing test
programs to boost compiler bug isolation.

• This work brings reinforcement learning to the compiler
bug isolation area for the first time, i.e., leveraging state-
of-the-art reinforcement learning to intelligently guide the
structural-mutation-based compiler bug isolation process.

• The proposed technique has been implemented as a practi-
cal compiler bug isolation system, named RecBi, based on
mature tools and libraries, i.e., Clang Libtooling library [1],
Gcov [3], and PyTorch [5].

• This work conducts an extensive study based on 120 real
compiler bugs from two most widely-used C compilers, i.e.,
GCC and LLVM, to evaluate the effectiveness of RecBi. The
results reveal the effectiveness of RecBi (significantly out-
performing the state-of-the-art DiWi), the contribution of
each major component in RecBi, and the impacts of different
RecBi configurations.

2 BACKGROUND
2.1 Test Program Mutation for Compiler Bug

Isolation
To solve the problem of compiler bug isolation, Chen et al. [16]
transforms this problem to the problem of passing test program gen-
eration. According to the idea of spectrum-based bug localization
(also called SBFL) [7, 67], all the compiler files touched by a given
failing test program during compilation are suspects and passing
test programs are helpful to reduce the suspicion of innocent files.
If a passing test program has similar execution trace (except the
buggy files) with the given failing test program, the buggy files
are more likely to be isolated by comparing the execution trace
between the passing test program and the given failing test pro-
gram. Therefore, DiWi designs three categories of local mutation
operators to produce such similar passing test programs by chang-
ing three minimal program elements (i.e., variables, constants, and
operators) of the given failing test program.

Although these traditional local mutation operators in DiWi
can generate some passing test programs as demonstrated by the

Enhanced Compiler Bug Isolation via Memoized Search ASE ’20, September 21–25, 2020, Virtual Event, Australia

existing work [16], their effectiveness actually is restricted. This is
because compiler bugs tend to occur in the components of compiler
optimizations, which tend to depend on test program structure;
on the contrary, traditional local mutation operators usually have
small influence on program structure due to their minor modifi-
cation and thus could omit many effective passing test programs.
Therefore, incorporating novel mutation operators that can effec-
tively altering program structure is necessary for compiler bug
isolation. In this work, we introduce the notion of structural mu-
tation, which augments the program-structure-altering ability by
inserting some control-flow-alerting statements (such as branch
and loop statements).

We use Figure 1 to illustrate the effectiveness of structural muta-
tion. Figure 1a shows a failing test program, which triggers a GCC
bug (ID: 64682) when using -O2 and above of GCC revision 219832
to compile it. This bug lies in the file combine.c and the root cause
is that an isns (the RTL representation of the code for a function
in GCC) sets a wrong note for a pseudo register after the correct
note has been distributed. When using traditional local mutation
in DiWi to isolate this bug, during the given period (i.e., one hour),
79 passing programs are generated and the buggy file is ranked at
the 30th position. However, when introducing structural mutation,
there are 20 passing programs generated by structural mutation.
Figure 1b shows one of the 20 passing programs. By inserting the
statement while(a- -) in Line 9, the buggy optimization can be
effectively avoided, leading to passing execution. With the help of
structural mutation, the buggy file is ranked at the 7th position.

2.2 Reinforcement Learning
To more efficiently generate effective passing test programs, we
aim to incorporate reinforcement learning to guide the process of
passing test program generation, and thus we briefly introduce
some background of reinforcement learning.

Reinforcement learning aims to learn how an agent should take
actions in an environment in order to maximize cumulative reward
in a long run [37, 61]. An agent has many states and actions, and
during the learning process, it performs an action at a state, then
measures the reward obtained by this action, and moves to the next
state. Through such a process, the agent gradually learns to select
a better action at the next state in order to obtain more reward. In
general, reinforcement learning can be divided into two categories:
value-based algorithms (e.g., Deep Q Learning algorithm [47]) and
policy-based algorithms (e.g., Policy Gradients algorithm [60]). The
former is a deterministic strategy that approximates the optimal
value function to select the best action at each state and tends to
be efficient and steady, while the latter is a probabilistic strategy
that learns the probability distribution (i.e., policy) of actions to
obtain the most reward and tends to fit continuous and stochastic
environments and have faster convergence.

With the development of reinforcement learning, the algorithms
merging both value-based and policy-based strategies, called Actor-
Critic algorithms (AC), are proposed [62]. In AC, the actor controls
how the agent behaves by learning the best policy via an actor neu-
ral network (ANN), while the critic predicts the reward achieved
by the action by calculating the value function via a critic neu-
ral network (CNN). Subsequently, the improved versions of AC

developer-provided
test programs

ingredient pool

seed test program mutated test program

ingredient
extraction

ingredient
selection

location
selection

insertion

renaming

Figure 2: Overview of Structural Mutation

are proposed, i.e., Advantage Actor-Critic (A2C) [63] and Asyn-
chronous Advantage Actor-Critic (A3C) [63]. Instead of the value
function, A2C learns the advantage value function by evaluating
both how good the action is and how much better it can be (which
incorporates future knowledge), which can reduce high variances
of neural networks. A3C further incorporates the asynchronous
mechanism to improve the learning efficiency. In this work, we
utilize the framework of A2C to solve the problem of compiler bug
isolation, since it is both effective (compared with AC) and suitable
to single-thread and multi-thread systems (compared with A3C).

3 APPROACH
In this section, we present our reinforcement compiler bug iso-
lation approach via structural mutation, named RecBi. Given a
compiler bug with a failing test program, RecBi first generates a
set of effective passing test programs by mutating the given failing
test program through a reinforcement learning based mutation pro-
cess. Second, based on the given failing test program and the set
of generated passing test programs, RecBi leverages off-the-shelf
SBFL to identify the compiler buggy files. The main contribution
of RecBi lies in the first step. During the process of passing test
program generation, besides changing minimal program elements
via traditional local mutation, RecBi further incorporates structural
mutation to change the structure of the given failing test program,
which could enlarge the mutation space to include more effective
passing test programs. However, not all the passing test programs
can facilitate to isolate compiler bugs as demonstrated by the exist-
ing work [16], and thus casually conducting mutation on the given
failing test program may not be effective. Therefore, RecBi further
incorporates reinforcement learning (which could effectively learn
both historical and future knowledge) to learn how to intelligently
conduct mutation on the given failing test program so that a set of
more effective passing test programs can be generated.

In the following, we introduce our structural mutation in Sec-
tion 3.1 and present our reinforcement-learning based test program
generation in Section 3.2. Although we do not propose any new
SBFL formula to calculate the suspicious score of each compiler file
in the second step of RecBi, we still briefly introduce the application
of SBFL in RecBi in Section 3.3 to make the paper self-contained.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Junjie Chen, Haoyang Ma, and Lingming Zhang

1 v o l a t i l e
2 i n t a , b , c =2 ;
3 uns igned d ;
4 i n t main () {
5 i n t e =−32;
6 d=−31;
7 f o r (; d >2 ; d ++)
8 f o r (e + + ; ; b−−)
9 i f (c)
10 break ;
11 e&&a ;
12 r e t u r n 0 ;
13 }

(a) Failing

1 v o l a t i l e
2 i n t a , b , c =2 ;
3 uns igned d ;
4 i n t main () {
5 i n t e =−32;
6 ⊲d=−31;
7 ⊲ f o r (; d >2 ; d ++)
8 ⊲ f o r (e + + ; ; b−−)
9 ⊲ i f (c)
10 break ;
11 ⊲e&&a ;
12 r e t u r n 0 ;
13 }

(b) Locations

1 v o l a t i l e
2 i n t a , b , c =2 ;
3 uns igned d ;
4 i n t main () {
5 i n t e =−32;

6 if(((long)(a-a))<1)

7 d=−31;
8 f o r (; d >2 ; d ++)
9 f o r (e + + ; ; b−−)
10 i f (c)
11 break ;
12 e&&a ;
13 r e t u r n 0 ;
14 } (c) Mutant

Figure 3: Example of Structural Mutation

3.1 Structural Mutation
The goal of mutation is to flip the compiler execution result (from
failing to passing) by transforming a given failing test program.
As presented in prior work [16, 18, 19, 58], most of compiler bugs
occur in the components of compiler optimizations, while the trig-
gering of compiler optimizations tends to depend on the structure
of test programs. Therefore, transforming the structure of a given
failing test program is helpful to generate effective passing test
programs. However, the existing local mutation operators in DiWi
usually have small influence on program structure due to its minor
modification, and thus we further explore structural mutation in
RecBi. More specifically, we design four structural mutation op-
erators, which insert four different types of statements to a given
failing test program respectively, to change the control-flow of the
failing test program. The four types of inserted statements are 1)
branch statements, 2) loop statements, 3) function calls, and
4) goto statements, since they are recognized to be effective to
change the control-flow of a program [23, 24, 42].

Except goto statements, the other three types of statements re-
quire additional ingredients (i.e., conditions in a branch or loop
statement, as well as the called function and its parameters in a func-
tion call) to complete insertion. However, it could be inefficient to
casually construct these ingredients. As demonstrated by the exist-
ing work [16], although the state-of-the-art compiler bug isolation
approach DiWi outperforms the approach using the developer-
provided test programs to isolate compiler bugs, the latter is able
to perform no worse than the former in some cases. Therefore,
it may be promising to adapt the ingredients already within the
developer-provided test programs for our structural mutation. In
this way, the unique value of the developer-provided test programs
embodied in the existing work [16] can be incorporated by RecBi.

Figure 2 shows the overview of our structural mutation, which
consists of three steps. First, RecBi extracts all the branch condi-
tions, loop conditions, declared functions and the corresponding
function calls, in the developer-provided test programs for the com-
piler under test, as an ingredient pool. Second, RecBi randomly
selects an ingredient from the ingredient pool according to the
type of the statement to be inserted, and randomly selects an in-
sertable location in the seed test program. It would produce invalid
test programs or fake passing test programs [16] (i.e., the gener-
ated passing test programs are not really passing and just remove

Table 1: Summary of mutation operators in RecBi

ID Description

1 Insert a branch (i.e., if) statement;
2 Insert a loop (i.e., while) statement;
3 Insert a function call;
4 Insert a goto statement;
5 Insert/remove a qualifier (i.e., volatile, const, and restrict);

6 Insert/remove a modifier (i.e., long, short, signed, and
unsigned);

7 Replace a variable with another valid one
8 Replace a constant with another valid one;
9 Replace/remove an unary operator;
10 Replace a binary operator with another valid one.

the test oracles) when inserting a statement to an improper loca-
tion. There are three types of non-insertable locations in RecBi:
1) the locations outside functions, 2) the locations before decla-
rations for the sake of maintaining the identifier scope, and 3)
the locations before the statements used as test oracles (such as
printf/__builtin_abort/return statements). Third, RecBi per-
forms insertion, and then conducts refactoring for new variables
in the selected ingredient, i.e., renaming the new variable to those
within the seed test program with compatible types, to make the
mutated test program valid. Figure 3 shows an illustrative example
for structural mutation, where Figure 3a is a failing test program,
Figure 3b identifies all the insertable locations (denoted as ⊲) in the
failing test program, and Figure 3c is a generated passing test pro-
gram via our structural mutation (by inserting a branch statement).
Local Mutation Operators. Besides these structural mutation op-
erators, RecBi also incorporates the traditional local mutation oper-
ators targeting the minimal program elements, which have been
studied by the existingwork for compiler bug isolation [16]. The rea-
son is that 1) the generated test programs via these local mutation
operators have been demonstrated to outperform the developer-
provided test programs and the test programs generated via the
widely-used compiler fuzzing technique (i.e., Csmith [70]) [16], and
2) for the compiler bugs in the front-end component (although the
number of this type of compiler bugs is rare), local mutation could
be very useful. Therefore, RecBi has 10 mutation operators in total,
which are summarized in Table 1.
Test Oracles. After mutation, it is also required to check whether
the generated test program is passing or still failing [15, 16]. Accord-
ing to the types of compiler bugs (i.e., crash bugs and wrong-code
bugs) [16, 20, 58], RecBi considers two types of test oracles ac-
cordingly. Regarding crash bugs (i.e., the compiler crashes when
using some compilation options to compile a test program), the
used test oracle is whether the compiler still crashes when using
the same compilation options to compile a generated test program.
Regarding wrong-code bugs (i.e., the compiler mis-compiles a test
program without any failure messages, causing the test program
to have inconsistent execution result under different compilation
options), the used test oracle is whether a generated test program
still produces inconsistent execution results under the compilation
options producing inconsistencies before.

Enhanced Compiler Bug Isolation via Memoized Search ASE ’20, September 21–25, 2020, Virtual Event, Australia

3.2 Test Program Generation via
Reinforcement Learning

Since not all the passing test programs are helpful to isolate com-
piler bugs as demonstrated by the existing work [16], it could be
ineffective to randomly perform mutation on a given failing test
program. In particular, different compiler bugs have different char-
acteristics and root causes, and thus the effects of these mutation
operators on different compiler bugs can be different. Therefore,
it is necessary for each specific compiler bug to learn the effect of
each mutation operator in order to generate more effective passing
test programs efficiently during the given time period.

As presented in Section 2.2, reinforcement learning is a well-
recognized strategy to guide an agent to behave better in an envi-
ronment so as to obtain the most reward [37], which highly matches
our problem, i.e., learning to generate more effective passing test
programs. Therefore, to achieve our goal, we leverage the power of
reinforcement learning in RecBi, where reward refer to the quality
of generated passing test programs (to be explained in Section 3.2.1).
More specifically, an agent has many states and actions, and during
the iterative process of reinforcement learning, the agent learns
more and better by conducting an action at a state and then measur-
ing the reward of this action. In RecBi, a state refers to a state of the
set of mutation operators, i.e., the number of times that each muta-
tion operator has been selected to generate passing test programs,
while an action refers to selecting and then applying a mutation
operator to a given failing test program.

Here, RecBi adopts the framework of A2C [63] to learn the effects
of these mutation operators in order to guide the generation of
effective passing test programs for a given compiler bug. This is
because it has been demonstrated to be effective and efficient in
practice and perform stablywith low variance [29, 56, 57]. Moreover,
A2C converges faster than the traditional AC algorithm. Figure 4
illustrates the overview of the reinforcement learning based strategy
in RecBi. Following the framework of A2C, RecBi constructs two
neural networks, i.e., ANN (Actor Neural Network) and CNN (Critic
Neural Network). ANN aims to predict the probability distribution
of actions based on historical knowledge and then choose an action to
be performed, while CNN aims to predict the potential reward to be
accumulated from the current state to a future state after performing
the selected action, which incorporates future knowledge. Based
on the predicted potential reward and the actual reward obtained
by performing the selected action, RecBi adopts an advantage loss
function (to be introduced in Section 3.2.2) to update both ANN and
CNN in order to make them learn more and better. In particular,
following the practice of A2C [62, 63], both ANN and CNN in
RecBi contain only one hidden layer in order to be light-weight
and converge fast. The process is repeated until the terminating
condition is reached, and its output is a set of generated effective
passing test programs. In the following, we introduce the actual
reward measurement (Section 3.2.1) and the advantage loss function
(Section 3.2.2) in detail.

3.2.1 Actual Reward Measurement. An important aspect to the suc-
cess of the A2C based approach is how to measure the actual reward
after applying a mutation operator to the given failing test program.
Inspired by the existing work [16], a set of effective passing test
programs should satisfy both similarity and diversity criteria. The

ANN action

predict

passing test
program

mutate actual
reward

measure

potential
reward

predict advantage
loss
function

update

CNN
update

state

update

Figure 4: Overview of Our Reinforcement Learning based
Test Program Generation Strategy

former refers to that each passing test program should share a sim-
ilar compiler execution trace with the given failing test program.
In this way, according to the idea of SBFL, the suspiciousness of
more buggy-free files can be reduced. The latter refers to that differ-
ent passing test programs should have diverse compiler execution
traces between each other in order to reduce the suspiciousness
of different buggy-free files. In this way, aggregating a set of pass-
ing mutated programs is helpful to effectively isolate the really
buggy files by avoiding bias. Given a set of generated passing test
programs denoted as 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛} and the failing test pro-
gram denoted as 𝑓 , we define the similarity and diversity metrics
achieved by the set of passing test programs on average as shown
in Formulae 1 and 2 respectively:

𝑠𝑖𝑚 =

∑𝑛
𝑖=1 (1 − 𝑑𝑖𝑠𝑡 (𝑝𝑖 , 𝑓))

𝑛
(1)

𝑑𝑖𝑣 =

∑𝑛−1
𝑖=1

∑𝑛
𝑗=𝑖+1 𝑑𝑖𝑠𝑡 (𝑝𝑖 , 𝑝 𝑗)
𝑛 (𝑛−1)

2

(2)

dist (a, b) = 1 − Cova ∩ Covb
Cova ∪ Covb

(3)

where dist(,) is the coverage distance between two test programs
and is measured by Jaccard Distance; Cov𝑎 and Cov𝑏 represent the
set of statements in the compiler covered by test programs 𝑎 and 𝑏,
respectively; 𝑛 is the number of generated passing test programs.

At a time step denoted as 𝑡 , after generating a passing test pro-
gram, RecBi measures the quality of the current set of passing test
programs by linearly combining the achieved similarity and diver-
sity as shown in Formula 4. Then, RecBi determines whether or not
to accept the generated passing test program according to whether
it can improve the quality of the passing program set compared with
the last time step denoted as 𝑡-1. Formula 5 presents the calculation
of the improved quality compared with the last time step.

𝑄𝑡 = 𝑛(𝛼 · 𝑑𝑖𝑣𝑡 + (1 − 𝛼) · 𝑠𝑖𝑚𝑡) (4)

Δ𝑄𝑡 = 𝑄𝑡 −𝑄𝑡−1
= (𝑛 − 1) (𝛼 · Δ𝑑𝑖𝑣 + (1 − 𝛼) · Δ𝑠𝑖𝑚)
+ (𝛼 · 𝑑𝑖𝑣𝑡 + (1 − 𝛼) · 𝑠𝑖𝑚𝑡),
Δ𝑑𝑖𝑣𝑡 = 𝑑𝑖𝑣𝑡 − 𝑑𝑖𝑣𝑡−1,Δ𝑠𝑖𝑚𝑡 = 𝑠𝑖𝑚𝑡 − 𝑠𝑖𝑚𝑡−1

(5)

where 𝛼 is the coefficient for the linear combination between di-
versity and similarity. Formula 4 also has a coefficient 𝑛 (the size

ASE ’20, September 21–25, 2020, Virtual Event, Australia Junjie Chen, Haoyang Ma, and Lingming Zhang

of the current passing test program set) due to the following in-
tuition – when the size of the passing test program set is small, it
is preferable for RecBi to accept a new passing test program even
though it may decrease the diversity and similarity (because when
𝑛 is smaller, the actual delta is less important); but with the size
of the passing test program set increasing, we have less interests
to generate such low-quality passing test programs with RecBi.
Therefore, we incorporate 𝑛 to reflect such intuition in RecBi.

However, at each state only one mutation operator is selected
to generate a passing test program, and a mutation operator could
perform extremely differently due to various mutated locations,
which could lead to slow convergence for A2C. Moreover, it means
that the improved quality of the passing program set in the current
time step cannot precisely reflect the effect of the selected mutation
operator. Therefore, to reduce the influence of various performance
of a mutation operator, RecBi combines the improved quality at
the current time step and the historically improved quality by the
current mutation operator as the actual reward obtained at the
current time step, instead of directly using the improved quality:

𝑅𝑒𝑤𝑎𝑟𝑑𝑡 =

∑𝑡
𝑖=1 Δ𝑄𝑖

𝑇 (𝑚𝑖)
(6)

where, Δ𝑄𝑖=0 if the selected mutation operator is not 𝑚𝑖 at the
𝑖th time step, otherwise Δ𝑄𝑖 is calculated by Formula 5, and 𝑇 (𝑚𝑖)
refers to the number of times that𝑚𝑖 has been selected to mutate
the given failing test program.

3.2.2 Advantage Loss Function. After obtaining the actual reward
at the current time step, RecBi further uses CNN to obtain the
predicted potential reward. To better take the future factors into
account, A2C designs an advantage loss function in order to reduce
the high variance of the two neural networks and avoid falling into
the local optimal [63], which is shown in Formula 7:

𝐴(𝑡) =
𝑡+𝑢∑
𝑖=𝑡

(𝛾 (𝑖−𝑡)𝑅𝑒𝑤𝑎𝑟𝑑𝑖) + 𝛾𝑢+1𝑃𝑅𝑡+𝑢+1 − 𝑃𝑅𝑡 (7)

where, 𝑢 represents that CNN considers the future 𝑢 consecutive
states and actions when predicting the potential reward, 𝛾 is the
weight of the actual future reward, PRt+u and PR𝑡 are the predicted
potential rewards at the (t+u)th and tth time steps by CNN respec-
tively. In particular, RecBi repeats the process in a time step for 𝑢
times and get the approximation of the actual future reward.

Based on the loss calculated by the advantage function in For-
mula 7, RecBi updates the weights of both ANN and CNN according
to Formula 8.

𝜔 = 𝜔 + 𝛽
𝜕(𝑙𝑜𝑔𝑃𝜔 (𝑎𝑡 |𝑠𝑡)𝐴(𝑡))

𝜕𝜔
(8)

where, 𝑠𝑡 and 𝑎𝑡 are the current state and action, 𝑃𝜔 (𝑎𝑡 |𝑠𝑡) refers to
the probability that 𝑎𝑡 is performed at 𝑠𝑡 based on the parameters
𝜔 in ANN and CNN, 𝛽 is the learning rate.

3.3 Compiler Buggy File Identification
Based on the set of generated passing test programs and the given
failing test program, RecBi leverages the idea of SBFL to identify
the buggy compiler files via comparing the coverage of failing
and passing tests [16]. More specifically, following prior work on
compiler bug isolation [16], RecBi first adopts state-of-the-art SBFL

formula, i.e., Ochiai [7] as shown in Formula 9, to calculate the
suspicious score of each statement:

𝑠𝑐𝑜𝑟𝑒 (𝑠) = 𝑒 𝑓𝑠√
(𝑒 𝑓𝑠 + 𝑛𝑓𝑠) (𝑒 𝑓𝑠 + 𝑒𝑝𝑠)

(9)

where ef𝑠 and nf𝑠 represent the number of failing tests that execute
and do not execute statement 𝑠 , and ep𝑠 represents the number
of passing tests that execute statement 𝑠 . Since in RecBi there is
only one given failing test program, ef𝑠 is 1. Moreover, RecBi only
considers the statements executed by the given failing test program,
and thus nf𝑠 is 0. Therefore, in RecBi the Ochiai formula can be
simplified as:

𝑠𝑐𝑜𝑟𝑒 (𝑠) = 1
√
1 + 𝑒𝑝𝑠

(10)

After obtaining the suspicious score of each statement, RecBi
further calculates the suspicious score of each compiler file. Follow-
ing prior work [16], RecBi aggregates the suspicious scores of the
statements executed by the given failing test program in a compiler
file as the suspicious score of the compiler file:

𝑆𝐶𝑂𝑅𝐸 (𝑓) =
∑𝑛𝑓

𝑖=1 𝑠𝑐𝑜𝑟𝑒 (𝑠𝑖)
𝑛𝑓

(11)

where 𝑛𝑓 is the number of statements executed by the failing test
program in the compiler file 𝑓 . According to the descending order of
the suspicious score of each compiler file, RecBi produces a ranking
list of compiler files, where the higher a compiler file is ranked, the
higher possibility the file has to be buggy.

4 EVALUATION
In this study, we aim to address the following research questions:

• RQ1: How does RecBi perform on compiler bug isolation?
• RQ2: How does each main component contribute to RecBi?
• RQ3: How does different RecBi configurations impact the
effectiveness of RecBi?

4.1 Compilers and Bugs
In the study, we used both GCC and LLVM as subjects to investigate
the effectiveness of RecBi, covering almost all popular open-source
C compilers used in the existing work [13, 16, 21, 41, 70]. Regarding
the subject bugs, we used the released benchmark, including 120
real compiler bugs (60 GCC bugs and 60 LLVM bugs), including all
bugs from prior compiler bug isolation work [16]. Each compiler
bug contains the following information: the buggy compiler version,
the failing test program, the compilation options to reproduce the
bug, and the buggy files (served as the ground-truth in our study).
On average, a GCC buggy version has 1,758 files with 1,447K source
lines of code (SLOC), while a LLVM buggy version has 3,265 files
with 1,723K SLOC.

4.2 Implementation and Parameters
We implemented our proposed approach RecBi based on Clang
Libtooling library [1], Gcov [3], and PyTorch [5]. They are used
to parse a test program to an AST (Abstract Syntax Tree), collect
compiler coverage information, and provide the framework of A2C,
respectively. Following the default setting in the existing work [8,
63], we also set 𝛾 and 𝛽 in A2C to be 0.9 and 0.01, respectively. In

Enhanced Compiler Bug Isolation via Memoized Search ASE ’20, September 21–25, 2020, Virtual Event, Australia

RecBi, the default settings of 𝛼 and 𝑢 are 0.8 and 5, respectively.
Note that we investigated the impacts of such main parameters
on RecBi in RQ3. Following the existing work [16], we set the
terminating condition to be one hour limit. That is, we compared all
the studied compiler bug isolation approaches under the same time
limit for fair comparison. To reduce the influence of randomness,
we repeatedly ran all the approaches for 5 times, and calculated
the median results. Our study is conducted on a workstation with
32-core CPU, 120G memory and Ubuntu 14.04 operating system.
We have released our tool and experimental data at our project
homepage: https://github.com/haoyang9804/RecBi.

4.3 Independent Variables
4.3.1 Compared Approaches. We compared RecBi with the state-of-
the-art compiler bug isolation approach DiWi [16] to answer RQ1.
DiWi isolates compiler bugs via local mutation and the traditional
MH (Metropolis-Hasting) algorithm [25], which depends on the
most recent behavior of each mutation operator to determine the
next mutation operator. Moreover, in traditional SBFL, developer-
provided tests are always used as the passing tests to reduce the
suspicion of innocent program elements. Thus, in RQ1 we also
investigated whether the generated passing programs via RecBi
outperform the developer-provided passing test programs for the
compiler under test. We call the approach using the latter Dev,
which uses the same strategy to rank all the compiler files as RecBi
(presented in Section 3.3) but uses the developer-provided passing
programs instead of the generated passing programs via RecBi.

In RQ2, we investigated the contributions of two main compo-
nents in RecBi, including newly designed structural mutation and
the reinforcement learning based test program generation strategy.
Therefore, we designed the following variants of RecBi.

• RecBimh replaces the reinforcement learning based test pro-
gram generation strategy with the traditional MH algorithm
used in DiWi. That is, RecBimh adopts the same strategy to
guide the process of test program generation as DiWi.

• RecBirand removes the reinforcement learning based test
program generation strategy from RecBi. That is, RecBirand
does not have any guidance to generate test programs by
randomly selecting a mutation operator in each time step.

• RecBifilter removes the reinforcement learning based test
program generation strategy from RecBi, but keeps the part
of measuring the quality of a generated passing test program
since the measurement method is the base of the reinforce-
ment learning based test program generation strategy. That
is, RecBifilter randomly selects a mutation operator in each
time step, then measures the quality of a generated passing
test program in the same way as RecBi, and finally filters
the low-quality passing test program (Δ𝑄𝑡 < 0). Actually,
RecBifilter is an updated version of RecBirand by adding a
measuring component.

We compared RecBimh and DiWi to investigate the contribution
of our designed structural mutation operators. We then compared
RecBi, RecBirand, and RecBimh to investigate the contribution of
our proposed reinforcement learning based test program gener-
ation strategy. Besides, we compared RecBirand and RecBifilter to
investigate the effectiveness of our designed measurement for the

quality of a generated passing test program, which is the base of
our reinforcement learning based test program generation strategy.

4.3.2 Different RecBi Configurations. In RQ3, we investigated dif-
ferent configurations of RecBi. Here, we discussed two main param-
eters in RecBi, including 𝛼 (used to combine similarity and diversity
as shown in Formula 4) and 𝑢 (the number of future time steps that
RecBi takes into account in Formula 7). Regarding 𝛼 , we studied
𝛼 = 0, 0.2, 0.4, 0.6, 0.8, and 1, respectively. Here, 𝛼 = 0 means that
RecBi only considers similarity, while 𝛼 = 1 means that RecBi only
considers diversity. Regarding 𝑢, we studied 𝑢 = 1, 2, 3, 4, 5, 6, and
7, respectively.

4.4 Measurements
Each compiler bug isolation approach produces a ranking list of
suspicious compiler files, and thus we measured the position of
each buggy file in the ranking list to measure the effectiveness of
each approach. Regarding the tie issue (i.e., multiple compiler files
have the same suspicious scores), we adopted the worst ranking
following the existingwork [35, 52]. More specifically, we calculated
the following metrics, which are widely-used by the existing work
in the area of bug localization [16, 40, 48, 55].

• Top-n measures the number of bugs that are isolated suc-
cessfully within the Top-n position (i.e., 𝑛 ∈ {1, 5, 10, 20} in
our study) in the ranking list. The larger the Top-n value is,
the more effective the approach is.

• Mean First Ranking (MFR)measures the mean of the rank
of the first buggy file in the ranking list for each bug. MFR
focuses on isolating the first buggy element fast in order to
facilitate debugging. The smaller the MFR value is, the more
effective the approach is.

• Mean Average Ranking (MAR)measures the mean of the
average rank of all buggy files in the ranking list for each bug.
MAR focuses on isolating all buggy elements precisely. The
smaller the MAR value is, the more effective the approach is.

4.5 Results and Analysis
4.5.1 RQ1: Overall effectiveness of RecBi. We illustrated the com-
parison results among various approaches in Table 2. Overall, RecBi
is able to isolate 27, 70, 93, 107 compiler bugs (out of 120 compiler
bugs) within Top-1, Top-5, Top-10, and Top-20 files, respectively.
That is, nearly 23%, 58%, 78%, and 89% bugs can be isolated success-
fully within Top-1, Top-5, Top-10, and Top-20 files through RecBi,
respectively. We further analyzed the effectiveness of RecBi on
different subject compilers, and surprisingly found that although
there are a larger number of compiler files in LLVM compared
with GCC, RecBi achieves better results on LLVM than GCC. For
example, the MFR and MAR values of RecBi on LLVM are 7.77
and 7.85 respectively while those of RecBi on GCC are 8.75 and
9.35 respectively. Moreover, we found that the other approaches
indeed perform worse on LLVM than GCC. The results demonstrate
that, the effectiveness of RecBi is not affected when facing larger
compiler systems, indicating its scalability.

We then compared RecBi with the state-of-the-art compiler bug
isolation approach DiWi. From Table 2, RecBi performs better than
DiWi in terms of all the metrics and on both of subject compilers.

https://github.com/haoyang9804/RecBi

ASE ’20, September 21–25, 2020, Virtual Event, Australia Junjie Chen, Haoyang Ma, and Lingming Zhang

Table 2: Compiler bug isolation effectiveness comparison

Sub Approach Top-1 ⇑𝑇𝑜𝑝−1 Top-5 ⇑𝑇𝑜𝑝−5 Top-10 ⇑𝑇𝑜𝑝−10 Top-20 ⇑𝑇𝑜𝑝−20 MFR ⇑𝑀𝐹𝑅 MAR ⇑𝑀𝐴𝑅

LLVM

RecBi 13 — 38 — 48 — 54 — 7.77 — 7.85 —
DiWi 6 116.67 23 65.22 37 29.73 47 14.89 16.80 53.75 16.92 53.61
Dev 2 550.00 12 216.67 22 118.18 37 45.95 37.36 79.20 37.49 79.06
RecBimh 10 30.00 31 22.58 42 14.29 50 8.00 11.17 30.44 11.48 31.62
RecBifilter 7 85.71 27 40.74 42 14.29 49 10.20 13.77 43.57 17.91 56.17
RecBirand 3 333.33 29 31.03 39 23.08 49 10.20 40.12 80.63 40.16 80.45

GCC

RecBi 14 — 32 — 45 — 53 — 8.75 — 9.35 —
DiWi 8 75.00 22 45.45 37 21.62 49 8.16 13.53 35.33 14.15 33.92
Dev 3 366.67 12 166.67 25 80.00 32 65.62 22.44 61.01 23.04 59.42
RecBimh 13 7.69 30 6.67 41 9.76 49 8.16 10.52 16.83 10.92 14.38
RecBifilter 14 0.00 30 6.67 43 4.65 50 6.00 10.10 13.37 10.30 9.22
RecBirand 4 250.00 18 77.78 26 73.08 39 35.90 19.40 54.90 19.99 53.23

ALL

RecBi 27 — 70 — 93 — 107 — 8.26 — 8.60 —
DiWi 14 92.86 45 55.56 74 25.68 96 11.46 15.17 45.55 15.53 44.62
Dev 5 440.00 24 191.67 47 97.87 69 55.07 29.90 72.38 30.26 71.58
RecBimh 23 17.39 61 14.75 83 12.05 99 8.08 10.84 23.80 11.20 23.21
RecBifilter 21 28.57 57 22.81 85 9.41 99 8.08 11.93 30.76 14.10 39.01
RecBirand 7 285.71 47 48.94 65 43.08 88 21.59 29.76 72.24 30.08 71.41

* Columns “⇑∗” present the improvement rates of RecBi over a compared approach in terms of various metrics.

The overall improvements of RecBi over DiWi in terms of Top-1,
Top-5, Top-10, Top-20 are 92.86%, 55.56%, 25.68%, and 11.46%, re-
spectively. In particular, as demonstrated by the existing work [38],
the Top-5 metric is more important in practice since most devel-
opers tend to abort the automated debugging tools if they cannot
localize buggy elements within Top-5 positions [38], and thus RecBi
is more practical than DiWi by largely improving the effectiveness
of compiler bug isolation in terms of Top-5. The MFR and MAR
values of RecBi are 8.26 and 8.60 respectively while those of DiWi
are 15.17 and 15.53 respectively, demonstrating 45.55% and 44.62%
improvements of RecBi over DiWi respectively. That demonstrates
that RecBi indeed significantly outperforms the state-of-the-art
approach DiWi for compiler bug isolation.

We also compared RecBi with the approach using the developer-
provided passing test programs Dev. From Table 2, RecBi signif-
icantly outperform Dev in terms of all the metrics and on both
GCC and LLVM. The overall improvements of RecBi over Dev are
440.00%, 191.67%, 97.87%, and 55.07% in terms of Top-1, Top-5, Top-
10, and Top-20, respectively. Also, the overall improvements of
RecBi over Dev are 72.38% and 71.58% in terms of MFR and MAR,
respectively. The results demonstrate the apparent superiority of
RecBi compared with Dev.
Qualitative Analysis. We further performed qualitative analysis
on RecBi with two examples. Figure 5 shows two programs, where
the left one is the given failing test program and the right one is a
passing test program generated via our designed structural muta-
tion (i.e., inserting a while statement). This bug is triggered when
compiling the failing test program using GCC revision 228291 at
-O2 and above. The root cause lies in the compiler file "ifcvt.c",
which incorrectly uses 8-bit registers for optimization instead of
32-bit ones. By inserting a while statement with a false predicate,
a passing test program is generated as shown in Figure 5b, since it
invalidates the statement “c=(b&15)ˆe;” that triggers the buggy
optimizations. We further calculated the similarity between the two

1 i n t p r i n t f (c on s t char ∗ , . . .) ;
2 i n t a ;
3 i n t b =10 ;
4 char c ;
5 i n t main () {
6 char d ;
7 i n t e =5 ;
8 f o r (a =0 ; a ; a−−){ e = 0 ; }
9 c = (b&15)^ e ;
10 d=c>e ? c : c<<e ;
11 p r i n t f ("%d \ n " , d) ;
12 r e t u r n 0 ;
13 }

(a) Failing Program

1 i n t p r i n t f (c on s t char ∗ , . . .) ;
2 i n t a ;
3 i n t b =10 ;
4 char c ;
5 i n t main () {
6 char d ;
7 i n t e =5 ;
8 f o r (a =0 ; a ; a−−){ e = 0 ; }

9 while(e<a) { c = (b&15)^ e ; }

10 d=c>e ? c : c<<e ;
11 p r i n t f ("%d \ n " , d) ;
12 r e t u r n 0 ;
13 }

(b) Passing Program

Figure 5: GCC Bug 67786

1 i n t a ;
2 vo id fn1 () {
3 char b =0 ;
4 f o r (; b != −2 ; b−−)
5 f o r (a =0 ; a <1 ; a ++)
6 i f ((uns igned i n t) b >1)
7 r e t u r n ;
8 }
9 i n t main () {
10 fn1 () ;
11 i f (a ! = 0)
12 _ _ b u i l t i n _ a b o r t () ;
13 r e t u r n 0 ;
14 }

(a) Failing Program

1 i n t a ;
2 vo id fn1 () {
3 char b =0 ;

4 goto Label;

5 f o r (; b != −2 ; b−−)
6 f o r (a =0 ; a <1 ; a ++)

7 Label:
8 i f ((uns igned i n t) b >1)
9 r e t u r n ;
10 }
11 i n t main () {
12 fn1 () ;
13 i f (a ! = 0)
14 _ _ b u i l t i n _ a b o r t () ;
15 r e t u r n 0 ;
16 } (b) Passing Program

Figure 6: LLVM Bug 24356

test programs following Formula 1, which is 0.974. That demon-
strates the power of our structural mutation that guarantees the
generated passing test program to share a similar execution trace
with the given failing test program. In particular, RecBi ranks the
buggy file at the 2nd position.

Enhanced Compiler Bug Isolation via Memoized Search ASE ’20, September 21–25, 2020, Virtual Event, Australia

Figure 6 shows another example, which presents a passing test
program (shown in Figure 6b) by inserting a goto statement to the
failing test program (shown in Figure 6a). This bug is triggeredwhen
compiling the failing test program at -O1 and above using LLVM
revision 243961. The buggy file is ScalarEvolution.cpp, which
causes that Line 6 is directly executed after Line 4 by skipping Line
5 due to incorrect optimization. By inserting a goto statement, the
program structure avoid triggering the buggy optimization, leading
to passing execution. The similarity between the two programs is
0.914, further confirming the effectiveness of RecBi. In particular,
RecBi ranks the buggy file at the 5th position.

4.5.2 RQ2: Contributions of Main Components. To answer RQ2, we
investigated the contributions of twomain components in RecBi, i.e.,
structural mutation and reinforcement learning based test program
generation strategy.
Contribution of StructuralMutation inRecBi.We investigated
the contribution of structural mutation by comparing DiWi and
RecBimh shown in Table 2. We found that RecBimh performs better
than DiWi in terms of all the metrics on both GCC and LLVM. More
specifically, RecBimh successfully isolates 23, 61, 83, and 99 bugs
within Top-1, Top-5, Top-10, and Top-20 files respectively while
DiWi only isolates 14, 45, 74, and 96 bugs respectively. The overall
improvements of RecBimh over DiWi are 28.54% and 27.88% in terms
of MFR and MAR, respectively. The experimental results demon-
strate that incorporating structural mutation indeed improves the
effectiveness of compiler bug isolation, confirming the contribution
of structural mutation in RecBi.

We further analyzed the contribution of each structural mutation
operator to isolate compiler bugs. We found that for each studied
bug, there exist the passing test programs generated by our de-
signed structural mutation operators. More specifically, the four
structural mutation operators (i.e., inserting branch statements,
loop statements, function calls, and goto statements) generated
passing test programs for 61%, 76%, 3%, and 25% bugs, respectively.
That is, all the four structural mutation operators are indeed useful
to generate passing test programs during compiler bug isolation.
In particular, the operator inserting loop statements make the most
contributions while that inserting function calls make the least
contributions among them. This phenomenon is as expected since
the operator inserting function calls tend to more largely change
the program structure than the other three operators, leading to
much less similarity between the generated passing test program
and the given failing test program (i.e., a more low-quality passing
test program). Then, due to the quality measurement (Formulae 4
and 5) in RecBi, such low-quality passing test programs are more
likely to be filtered.
Contribution ofReinforcement Learning basedTest Program
Generation Strategy. We then investigated the contribution of
our reinforcement learning based test program generation strat-
egy, by comparing RecBi, RecBirand, and RecBimh shown in Table 2.
We found that among the three approaches, RecBi performs the
best while RecBirand performs the worst. More specifically, the
improvements of RecBi over RecBirand in terms of Top-1, Top-5,
Top-10, Top-20, MFR, and MAR are 285.71%, 48.94%, 43.08%, 21.59%,
72.24%, and 71.41% respectively, and those of RecBi over RecBimh

(a) GCC (b) LLVM

Figure 7: Similarity between the given failing test program
and generated passing test programs

(a) GCC (b) LLVM

Figure 8: Diversity among generated passing test programs

are 17.39%, 14.75%,12.05%, 8.08%, 23.80%, and 23.21% respectively.
That is, our reinforcement learning based strategy outperforms
both the random strategy and the MH-based strategy used by the
state-of-the-art approach DiWi, demonstrating the contribution of
our reinforcement learning based test program generation.

We further analyzed the reason why our reinforcement learning
based strategy outperforms the other two strategies by calculating
the similarity (Formula 1) and diversity (Formula 2) for the gen-
erated passing test programs via the three strategies, respectively.
Figure 7 presents the average similarity between the generated pass-
ing test programs and the given failing test program across all the
bugs for the three strategies respectively, while Figure 8 presents
the average diversity among all the passing test programs across all
the bugs. In the two figures, the violin plots show the density at dif-
ferent values, and the box plots show the median and interquartile
ranges. From Figures 7 and 8, both similarity values and diversity
values for RecBi are distributed more intensively than those for
RecBimh and RecBirand, indicating that the quality of the generated
passing test programs through our reinforcement learning based
strategy is more stable. In general, the similarity achieved by RecBi
is larger than that achieved by both RecBimh and RecBirand, and
RecBi does not have the low-quality passing test programs with
little similarity. Moreover, we found that the diversity achieved
by RecBi does not have superiority compared with RecBimh and
RecBirand. This phenomenon is as expected since both similarity
and diversity actually contradict each other to some degree. The
results indicate that when staying high similarity, enlarging the
diversity would facilitate effective compiler bug isolation.

We then compared RecBifilter with RecBirand to investigate the
contribution of our designed measurement for the quality of a gen-
erated passing test program, which is the base of our reinforcement
learning based strategy. From Table 2, we found that RecBifilter sig-
nificantly outperforms RecBirand, although performing worse than
RecBi. More specifically, the MFR and MAR values of RecBirand
are only 29.76 and 30.08 respectively while those of RecBifilter are
11.93 and 14.10 respectively. That is, incorporating our designed

ASE ’20, September 21–25, 2020, Virtual Event, Australia Junjie Chen, Haoyang Ma, and Lingming Zhang

(a) Impact of 𝛼 (b) Impact of 𝑢

Figure 9: The impact of different parameter settings

quality measurement into the random strategy is able to largely im-
prove the effectiveness of the random strategy, demonstrating the
necessity of filtering low-quality passing test programs in RecBi.

4.5.3 RQ3: Impact of Different RecBi Configurations. We investi-
gated the impact of two main parameters in RecBi, i.e., 𝛼 and 𝑢.
Figure 9a shows the effectiveness of RecBi at different 𝛼 values in
terms of Top-1 and Top-5 metrics. As demonstrated by the existing
work [38], Top-1 and Top-5 results are more important in practical,
and thus we used the two metrics as the representatives to evaluate
the impact of different RecBi configurations. In Figure 9a, the x-
axis represents the 𝛼 values while the y-axis represents the metric
values on both GCC and LLVM. From this figure, we found that our
default setting (i.e., 0.8) is better than the other settings in terms of
both Top-1 and Top-5 metrics, especially better than the settings of
0 and 1, indicating that combining both similarity and diversity out-
performs individual similarity or diversity for generating effective
passing test programs.

Figure 9b shows the effectiveness of RecBi at different𝑢 values in
terms of Top-1 and Top-5 metrics. From this figure, we found that
the best setting ranges from 4 to 6, including our default setting
(i.e., 5). This is as expected since when the value of 𝑢 is small, there
is little future knowledge considered in RecBi, leading to worse
effectiveness, while when the value of 𝑢 is large, the prediction for
the future potential reward could become more inaccurate, leading
to worse effectiveness of RecBi.

5 DISCUSSION
5.1 Threats to Validity
The internal threat to validity mainly lies in the implementations of
our approach RecBi and the compared approach DiWi. To reduce
this threat, regarding the implementation of DiWi, we adopted
the implementation released by the existing work [16]. Regarding
the implementation of RecBi, we implemented it based on mature
libraries as presented in Section 4.2 and carefully checked the code.

The external threats to validity mainly lie in the used compilers
and bugs. Regarding the used compilers, following the existing
work of compiler bug isolation [16], we also used two most popular
C open-source compilers, i.e., GCC and LLVM. Regarding the used
bugs, we used 120 real compiler bugs including all bugs from prior
compiler bug isolation work [16]. To further reduce these threats,
we will collect more real compiler bugs from more compilers to
evaluate the effectiveness of RecBi.

The construct threats to validity mainly lie in the settings of
parameters, randomness, and the used measurements. Regarding
the settings of parameters, we have presented our specific settings
in Section 4.2 and investigated the influence of main parameters in
Section 4.5.3. Regarding the involved randomness in our study, we

repeatedly ran all the approaches for 5 times, and calculated the
median results. Regarding the used measurements, we have used
several widely-used measurements in the area of bug localization.
To further reduce this threat, we will try to apply RecBi to the
industry and collect feedback from developers to evaluate RecBi.

5.2 Future Work
We discuss the following extensions of RecBi as our future work.
First, RecBi does not specially deal with undefined behaviors [30]
(i.e., the semantics of certain operations are undefined in the pro-
gramming languages standards). Similar to the existing work [16],
our mutation may also introduce undefined behaviors to a test pro-
gram, causing that the compiler may produce uncertain results for
the test program with undefined behaviors. However, undefined
behaviors tend to affect bug detection since different results of a
“failing” test program may be caused by real bugs or undefined be-
haviors. RecBi only keeps the passing test programs with the same
results to isolate compiler bugs, and thus undefined behaviors may
not affect RecBi. As demonstrated by the existing work [43, 65], it
is challenging to identify undefined behaviors in compiler research,
in the future we will try to relieve this problem by adopting existing
efficient techniques [43]. Second, we will further extend RecBi to
isolate compiler bugs at more fine-grained levels (e.g., methods) by
calculating the suspicious scores at the corresponding levels.

6 RELATEDWORK
RecBi is based on both mutation and reinforcement learning for
compiler bug isolation, and thus we introduce three categories of
related work, including compiler debugging, mutation-based bug
isolation, and learning-based bug isolation.
Compiler Debugging. Besides the most related work DiWi [16]
described before, Zeller [71] proposed to produce an entire cause-
effect chain from input to result in GCC to facilitate debugging.
Actually, RecBi is complementary to the cause-effect chain: 1) the
latter produces bug-diagnosis information at the program-state
level while the former does this at the source-code level, 2) the
latter manipulates in memory and may not handle external states,
3) the former is more lightweight.

Besides, in compiler debugging there are many work focusing on
providing debugging messages and visualization [11, 31, 39, 49, 54].
Some work also focused on simplifying the test programs triggering
compiler bugs in order to facilitate debugging [10, 32, 53, 59, 72].
In our work, the failing test programs are collected from compiler
bug reports, and all of them have already been the simplified ones
as required by compiler developers [16]. Some work focused on
identifying the test programs triggering the same compiler bug for
efficient debugging [22, 33]. Different from them, our work focuses
on compiler bug isolation by generating passing test programs via
reinforcement learning and mutation.
Mutation-based Bug Localization.Mutation-based bug localiza-
tion considers the actual impacts of code elements in the software
systems under test on test outcomes to localize bugs through mu-
tation testing [48, 50, 51, 74]. More specifically, it injects mutation
bugs to each code element to simulate the actual impact of each
code element. For example, Papadakis et al. [50, 51] proposed the
first mutation-based bug localization approach, named Metallaxis.

Enhanced Compiler Bug Isolation via Memoized Search ASE ’20, September 21–25, 2020, Virtual Event, Australia

Its basic insight is that if mutating a code element can change
the outcome of some failing tests, the code element may have po-
tential impact on the failing tests and thus may have been buggy.
Meanwhile, Zhang et al. [74] independently proposed FIFL, the
first mutation-based bug localization approach for evolving sys-
tems. The basic insight is that regression bugs can be simulated
and localized via mutating corresponding code elements on the old
program version. More recently, Moon et al. [48] proposed another
mutation-based bug localization approach, named MUSE, based on
the idea that mutating faulty code elements may cause more failed
tests to pass than mutating correct elements. Different from these
traditional mutation-based bug localization approaches, which aim
to mutate the software systems under test, our approach RecBi
aims to mutate the failing test cases (i.e., test programs) to generate
passing test programs for compiler bug isolation.
Learning-basedBugLocalization. In recent years, a lot of learning-
based bug localization approaches have been proposed [40, 44, 55,
68]. For example, Xuan and Monperrus [68] proposed to utilize the
learning-to-rank algorithm to localize bugs by combining different
suspicious scores calculated by SBFL. Le et al. [40] further consid-
ered both the suspicious scores calculated by SBFL and program
invariant to localize bugs through the learning-to-rank algorithm.
Recently, Li et al. [44] proposed to use deep learning techniques
to localize bugs by considering the suspicious scores calculated
by SBFL and mutation based bug localization, as well as static fea-
tures extracted from the defect prediction area [64] and information
retrieval area [26]. Different from these learning-based bug local-
ization approaches, which use learning techniques to rank all the
suspicious code elements, our approach RecBi utilizes the reinforce-
ment learning algorithm (i.e., A2C) to guide the process of passing
test program generation for compiler bug isolation.

7 CONCLUSION
In this paper, we propose a reinforcement compiler bug isolation
approach via structural mutation, which is called RecBi. RecBi first
augments traditional local mutation operators with structural ones
in order to generate a set of effective passing test programs for
a given compiler bug with a failing test program. In particular,
RecBi incorporates reinforcement learning to intelligently guide
the process of passing test program generation. Based on the set of
generated passing test programs and the given failing test program,
RecBi ranks all the suspicious files by comparing the execution trace
between them. We conducted an extensive study to evaluate RecBi
based on two most popular C open-source compilers (i.e., GCC
and LLVM) and 120 real bugs from them. The experimental results
demonstrate the effectiveness of RecBi, significantly outperforming
the state-of-the-art compiler bug isolation approach.

ACKNOWLEDGEMENTS
This work was partially supported by the National Natural Science
Foundation of China 62002256 and National Science Foundation
under Grant Nos. CCF-1763906 and CCF-1942430, and Alibaba.

REFERENCES
[1] Accessed: 2020. Clang Libtooling library. http://clang.llvm.org/docs/LibTooling.

html.
[2] Accessed: 2020. GCC. https://gcc.gnu.org.

[3] Accessed: 2020. Gcov. https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
[4] Accessed: 2020. LLVM. https://llvm.org.
[5] Accessed: 2020. PyTorch. https://pytorch.org/.
[6] R. Abreu, P. Zoeteweij, and A. J. c. Van Gemund. 2006. An Evaluation of Similarity

Coefficients for Software Fault Localization. In 2006 12th Pacific Rim International
Symposium on Dependable Computing (PRDC’06). 39–46.

[7] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2007. On the accuracy of
spectrum-based fault localization. In Testing: Academic and Industrial Conference
Practice and Research Techniques-MUTATION (TAICPART-MUTATION 2007). IEEE,
89–98.

[8] Milan Aggarwal, Aarushi Arora, Shagun Sodhani, and Balaji Krishnamurthy. 2018.
Improving Search Through A3C Reinforcement Learning Based Conversational
Agent. In 18th International Conference on Computational Science. 273–286.

[9] Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang. 2020. On the Effective-
ness of Unified Debugging: An Extensive Study on 16 Program Repair Systems.
In ASE. to appear.

[10] Jacqueline M. Caron and Peter A. Darnell. 1990. Bugfind: A Tool for Debugging
Optimizing Compilers. SIGPLAN Notices 25, 1 (1990), 17–22.

[11] Bor-Yuh Evan Chang, Adam Chlipala, George C. Necula, and Robert R. Schneck.
2005. Type-based verification of assembly language for compiler debugging. In
Proceedings of TLDI’05: 2005 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation. 91–102.

[12] Junjie Chen. 2018. Learning to accelerate compiler testing. In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings.
472–475.

[13] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Bing Xie.
2017. Learning to prioritize test programs for compiler testing. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE, 700–711.

[14] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. Test Case Prioritization for Compilers: A Text-Vector Based
Approach. In 2016 IEEE International Conference on Software Testing, Verification
and Validation. 266–277.

[15] Junjie Chen, Yanwei Bai, Dan Hao, Lingming Zhang, Lu Zhang, Bing Xie, and
Hong Mei. 2016. Supporting oracle construction via static analysis. In 2016 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 178–189.

[16] Junjie Chen, Jiaqi Han, Peiyi Sun, Lingming Zhang, Dan Hao, and Lu Zhang.
2019. Compiler bug isolation via effective witness test program generation. In
Proceedings of the ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE
2019, Tallinn, Estonia, August 26-30, 2019. 223–234.

[17] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Lu
Zhang. 2019. Static duplicate bug-report identification for compilers. SCIENTIA
SINICA Informationis 49, 10 (2019), 1283–1298.

[18] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. An empirical comparison of compiler testing techniques. In
Proceedings of the 38th International Conference on Software Engineering. 180–190.

[19] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan
Hao, and Lu Zhang. 2020. A Survey of Compiler Testing. ACM Computing Surveys
(CSUR) 53 (02 2020), 1–36.

[20] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Lu
Zhang. 2019. History-Guided Configuration Diversification for Compiler Test-
Program Generation. In 34th IEEE/ACM International Conference on Automated
Software Engineering. 305–316.

[21] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu
Zhang, and XIE Bing. 2018. Coverage prediction for accelerating compiler testing.
IEEE Transactions on Software Engineering (2018).

[22] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Z. Fern,
Eric Eide, and John Regehr. 2013. Taming compiler fuzzers. In ACM SIGPLAN
Conference on Programming Language Design and Implementation. 197–208.

[23] Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep differential testing of JVM
implementations. In Proceedings of the 41st International Conference on Software
Engineering. 1257–1268.

[24] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed differential testing of JVM implementations. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 85–99.

[25] Siddhartha Chib and Edward Greenberg. 1995. Understanding the metropolis-
hastings algorithm. The american statistician 49, 4 (1995), 327–335.

[26] Tung Dao, Lingming Zhang, and NaMeng. 2017. How does execution information
help with information-retrieval based bug localization?. In Proceedings of the 25th
International Conference on Program Comprehension. 241–250.

[27] Nicholas DiGiuseppe and James A. Jones. 2011. On the Influence ofMultiple Faults
on Coverage-Based Fault Localization. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis. 210–220.

[28] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017.
Automated testing of graphics shader compilers. Proc. ACM Program. Lang. 1,
OOPSLA (2017), 93:1–93:29.

http://clang.llvm.org/docs/LibTooling.html
http://clang.llvm.org/docs/LibTooling.html
https://gcc.gnu.org
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://llvm.org
https://pytorch.org/

ASE ’20, September 21–25, 2020, Virtual Event, Australia Junjie Chen, Haoyang Ma, and Lingming Zhang

[29] Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. 2012.
A survey of actor-critic reinforcement learning: Standard and natural policy
gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews) 42, 6 (2012), 1291–1307.

[30] Chris Hathhorn, Chucky Ellison, and Grigore Rosu. 2015. Defining the undefined-
ness of C. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 336–345.

[31] K. Scott Hemmert, Justin L. Tripp, Brad L. Hutchings, and Preston A. Jackson.
2003. Source Level Debugger for the Sea Cucumber Synthesizing Compiler. In
11th IEEE Symposium on Field-Programmable Custom Computing Machines. 228.

[32] Satia Herfert, Jibesh Patra, and Michael Pradel. 2017. Automatically reducing
tree-structured test inputs. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering. 861–871.

[33] Josie Holmes and Alex Groce. 2018. Causal Distance-Metric-Based Assistance
for Debugging after Compiler Fuzzing. In 29th IEEE International Symposium on
Software Reliability Engineering. 166–177.

[34] Shin Hong, Byeongcheol Lee, Taehoon Kwak, Yiru Jeon, Bongsuk Ko, Yunho
Kim, and Moonzoo Kim. 2015. Mutation-Based Fault Localization for Real-
World Multilingual Programs. In Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering. 464–475.

[35] Dennis Jeffrey, Neelam Gupta, and Rajiv Gupta. 2008. Fault localization using
value replacement. In Proceedings of the 2008 international symposium on Software
testing and analysis. 167–178.

[36] James A. Jones and Mary Jean Harrold. 2005. Empirical Evaluation of the Taran-
tula Automatic Fault-Localization Technique. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering. 273–282.

[37] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. 1996. Rein-
forcement learning: A survey. Journal of artificial intelligence research 4 (1996),
237–285.

[38] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’
expectations on automated fault localization. In Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis. 165–176.

[39] Nico Krebs and Lothar Schmitz. 2014. Jaccie: A Java-based compiler-compiler
for generating, visualizing and debugging compiler components. Sci. Comput.
Program. 79 (2014), 101–115.

[40] Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A learning-
to-rank based fault localization approach using likely invariants. In Proceedings
of the 25th International Symposium on Software Testing and Analysis. 177–188.

[41] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equiv-
alence modulo inputs. In ACM SIGPLAN Conference on Programming Language
Design and Implementation. 216–226.

[42] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via
guided stochastic program mutation. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications. 386–399.

[43] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David
Majnemer, John Regehr, and Nuno P. Lopes. 2017. Taming undefined behavior
in LLVM. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 633–647.

[44] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
169–180.

[45] Xia Li and Lingming Zhang. 2017. Transforming programs and tests in tandem
for fault localization. Proc. ACM Program. Lang. 1, OOPSLA (2017), 92:1–92:30.

[46] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao, and
Lu Zhang. 2020. Can Automated Program Repair Refine Fault Localization? A
Unified Debugging Approach. In ISSTA. to appear.

[47] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. (2013).

[48] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the
mutants: Mutating faulty programs for fault localization. In 2014 IEEE Seventh
International Conference on Software Testing, Verification and Validation. IEEE,
153–162.

[49] Kazunori Ogata, Tamiya Onodera, Kiyokuni Kawachiya, Hideaki Komatsu, and
Toshio Nakatani. 2006. Replay compilation: improving debuggability of a just-in-
time compiler. In Proceedings of the 21th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications. 241–252.

[50] Mike Papadakis and Yves Le Traon. 2012. Using Mutants to Locate "Unknown"
Faults. In Fifth IEEE International Conference on Software Testing, Verification and
Validation. 691–700.

[51] Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault
localization. Softw. Test. Verification Reliab. 25, 5-7 (2015), 605–628.

[52] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and improving fault
localization. In 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE). IEEE, 609–620.

[53] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-case reduction for C compiler bugs. In ACM SIGPLAN Conference
on Programming Language Design and Implementation. 335–346.

[54] Anthony M. Sloane. 1999. Debugging Eli-Generated Compilers With Noosa. In
Compiler Construction, 8th International Conference, CC’99, Held as Part of the
European Joint Conferences on the Theory and Practice of Software. 17–31.

[55] Jeongju Sohn and Shin Yoo. 2017. FLUCCS: using code and change metrics to
improve fault localization. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 273–283.

[56] Sriram Srinivasan, Marc Lanctot, Vinicius Zambaldi, Julien Pérolat, Karl Tuyls,
Rémi Munos, and Michael Bowling. 2018. Actor-critic policy optimization in
partially observable multiagent environments. In Advances in neural information
processing systems. 3422–3435.

[57] Pei-Hao Su, Pawel Budzianowski, Stefan Ultes, Milica Gasic, and Steve Young.
2017. Sample-efficient actor-critic reinforcement learning with supervised data
for dialogue management. arXiv preprint arXiv:1707.00130 (2017).

[58] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. 2016. Toward under-
standing compiler bugs in GCC and LLVM. In Proceedings of the 25th International
Symposium on Software Testing and Analysis. 294–305.

[59] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018.
Perses: syntax-guided program reduction. In Proceedings of the 40th International
Conference on Software Engineering. 361–371.

[60] Richard Sutton, David Mcallester, Satinder Singh, and Yishay Mansour. 2000. Pol-
icy Gradient Methods for Reinforcement Learning with Function Approximation.
Adv. Neural Inf. Process. Syst 12 (02 2000).

[61] R. S. Sutton and A. G. Barto. 1998. Reinforcement Learning: An Introduction.
IEEE Transactions on Neural Networks 9, 5 (1998), 1054–1054.

[62] Konda Vijay, R. and Tsitsiklis John, N. 2000. Actor-critic Algorithms. SIAM
Journal on Control and Optimization (April 2000).

[63] Mnih Volodymyr, Badia Adrià, Puigdomènech, Mirza Mehdi, and Graves Alex.
2016. Asynchronous Methods for Deep Reinforcement Learning. In ICML2016.
1928–1937.

[64] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic
features for defect prediction. In Proceedings of the 38th International Conference
on Software Engineering. 297–308.

[65] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama.
2013. Towards optimization-safe systems: analyzing the impact of undefined
behavior. In ACM SIGOPS 24th Symposium on Operating Systems Principles. 260–
275.

[66] Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020. Deep
Learning Library Testing via Effective Model Generation. In The 28th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. to appear.

[67] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
Survey on Software Fault Localization. IEEE Trans. Software Eng. 42, 8 (2016),
707–740.

[68] Jifeng Xuan and Martin Monperrus. 2014. Learning to Combine Multiple Ranking
Metrics for Fault Localization. In 30th IEEE International Conference on Software
Maintenance and Evolution. 191–200.

[69] Jifeng Xuan and Martin Monperrus. 2014. Test case purification for improv-
ing fault localization. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 52–63.

[70] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation. 283–294.

[71] Andreas Zeller. 2002. Isolating cause-effect chains from computer programs. In
Proceedings of the Tenth ACM SIGSOFT Symposium on Foundations of Software
Engineering. 1–10.

[72] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Software Eng. 28, 2 (2002), 183–200.

[73] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing failure-
inducing program edits based on spectrum information. In 2011 27th IEEE Inter-
national Conference on Software Maintenance (ICSM). 23–32.

[74] Lingming Zhang, Lu Zhang, and Sarfraz Khurshid. 2013. Injecting mechanical
faults to localize developer faults for evolving software. In Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications. 765–784.

[75] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal program enu-
meration for rigorous compiler testing. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 347–361.

	Abstract
	1 Introduction
	2 Background
	2.1 Test Program Mutation for Compiler Bug Isolation
	2.2 Reinforcement Learning

	3 Approach
	3.1 Structural Mutation
	3.2 Test Program Generation via Reinforcement Learning
	3.3 Compiler Buggy File Identification

	4 Evaluation
	4.1 Compilers and Bugs
	4.2 Implementation and Parameters
	4.3 Independent Variables
	4.4 Measurements
	4.5 Results and Analysis

	5 Discussion
	5.1 Threats to Validity
	5.2 Future Work

	6 Related Work
	7 Conclusion
	References

