LOGIC FOR CS

NOTES FOR BEN'S COURSE AT UWATERLOO'

¹https://www.youtube.com/playlist?list=PLPW2keNyw-utXOOzLR-Wp1poeE5LEtv3N

CONTENTS

Logic for CS

.1 Propos it ional Log ic

.1.1 Proof System

Definition 1 (consistent). *A set of w.f.f.* Σ *is consistent if* $\Sigma \vdash \alpha$ *and* $\Sigma \vdash \neg \alpha$ *does not hold together.*

Another definition of consistency is that $\Sigma \nvdash \bot$ where \bot is a contradiction*^a* .

*^a*https://planetmath.org/consistent

Claim 1. *A set of w.f.f.* Σ *is consistent iff* $\exists \alpha, \Sigma \nvdash \alpha$.

Proof. \rightarrow : pick any α , either $\Sigma \nvDash \alpha$ or $\Sigma \vdash \alpha$, then there exists one that is not proved by Σ .

 \leftarrow : assume that for some $beta$, $\Sigma \nvdash \beta$, if the first definition is violated, then, for some α , $\Sigma \vdash \alpha$ and $\Sigma \vdash \neg \alpha$, then $\Sigma \vdash \Sigma \cup \{\alpha, \neg \alpha\} \vdash$ $\{\alpha, \neg \alpha\}$. $\{\alpha, \neg \alpha\} \vdash \beta$ for every β , contradicting the assumption. \Box

Corollary 1. *If* $\Sigma \subseteq \Sigma'$, then if Σ is consistent, then so does Σ' .

Definition 2 (Soundness). *If* $\vdash \alpha$ *, then* α *is a tautology.*

In another word, every theorem is a tautology.

Corollary 2. ⊬ P*, since* P *is a propositional variable, which is not a tautology.*

The universe U (the set which includes everything) is the least consistent, since it contains everything. Therefore, for every $\alpha \in U, \neg \alpha \in U,$ U can prove both. It has the most unsteady stance:).

⊢ is about syntax while ⊨ is about semantics. ⊢ shows that though the machine doesn't know anything, it can reach some result by axioms and modus ponens. \models shows that the result is true in the real world given by human being's assignment of truth values.

Theorem 1. *In a sound proof system, every satisfiable* Σ *is consistent.*

Proof. b.w.o.c, assume the satisfiable Σ is inconsistent. Then, for some α , both $\Sigma \vdash \alpha$ and $\Sigma \vdash \neg \alpha$. If Σ is satisfiable, then for some truth assignment V, V satisfies all w.f.f.in Σ . By soundness, $\Sigma \vDash \alpha$ and $\Sigma \vDash$ $\neg \alpha$. So for that assignment V, we get $V(\alpha) = T$ and $V(\neg \alpha) = T$, violating the truth table of negation. \Box

The above theorem builds a bridge from semantic to syntax.

Theorem 2 (Extended Soundness). *If* $Sigma \vDash \alpha$ *, then* $\Sigma \vDash \alpha$ *.*

Corollary 3. *If any set of w.f.f.is consistent, then, in particular* ∅*.*

Definition 3 (Maximally Consistent)**.** *We say that* Σ *is maximally consistent if* Σ *is consistent, but, for every* α *, either* $\Sigma \vdash \alpha$ *or* $\Sigma \cup \{\alpha\}$ *is inconsistent.*

Consistency tells us that if $\Sigma \vdash \alpha$, then $\Sigma \nvdash \alpha$ doesn't hold. But if $\Sigma \nvdash \alpha$, then we can't say $\Sigma \vdash \alpha$ holds. Consistency only ensures no contradiction.

Maximally consistency tells us that if $\Sigma \nvdash \alpha$, then $\Sigma \vdash \alpha$ must hold. The maximality nature ensures that the negation of every nonprovable *w.f.f.*is provable.

Example 1. Let $\Sigma \equiv \{P_1\}$ over the variables P_1, P_2, \ldots

Claim 2. $\{P_1\}$ *is consistent since it's satisfiable.*

Claim 3. {P1} *is not maximally consistent*

Proof. It suffices to show that $\{P_1\} \nvdash P_3$ and $\{P_1, P_3\}$ is consistent.

By soundness, it suffices to show that $\{P_1\} \vDash P_3$. Just find some truth assignment that V *s.t.* $V(P_1) = T$ and $V(P_3) = F$. So $\{P_1\} \nvdash P_3$.

Logic for CS

Since $\{P_1, P_3\}$ is satisfiable, so it's consistent.

 \Box

Lemma 1. *For every consistent* Σ*, there exists a maximally consistent* Σ ′ ⊇ Σ*.*

Proof. Let $\{\alpha_1, \ldots, \alpha_i, \alpha_{i+1}, \ldots\}$ is a set of w.f.f.over $\{P_1, P_2, \ldots, P_i, \ldots\}$ \Box

Definition 4 (Monotonicity). $\forall \Sigma, \Sigma', \alpha, \text{ if } \Sigma \vdash \alpha, \Sigma \subseteq \Sigma', \text{ then}$ $\Sigma' \vdash \alpha$.

Theorem 3 (Deduction Theorem). $\Sigma \cup {\alpha} \vdash \beta$ *iff* $\Sigma \vdash \alpha \rightarrow \beta$ *.*

Theorem 4. Any consistent set of w.f.f. Σ can be extended to Σ 's.t. $\Sigma' \supseteq \Sigma$ *that is maximally consistent.*

Proof. We construct a sequence of set of w.f.f.. $\Sigma_0 \subseteq \Sigma_1 \subseteq \Sigma_2 \subseteq$ $\ldots \subseteq \Sigma_i \subseteq \Sigma_{i+1}$ *s.t.*1) $\Sigma_0 = \Sigma$ and 2) For all Σ_i, Σ_i is consistent, and 3) for fixed enumeration of all $w.f.f., \alpha_1, \alpha_2, \ldots, \alpha_n$, for all i, either $\Sigma_i \vdash \alpha$ or $\Sigma_i \vdash \neg \alpha$.

Assume Σ_i is defined and meets the requirements, let Σ_{i+1} be Σ_i if $\Sigma_i \vdash \neg \alpha_i$, otherwise $\Sigma_{i+1} = \Sigma_i \cup \{ \alpha_i \}.$

Now we want to prove if Σ_i meets the requirement, then so will Σ_{i+1} . Requirement 1) is trivial. Requirement 2) and 3) are simultaneously proved by showing $\Sigma_{i+1} \nvdash \neg \alpha_i$ if $\Sigma_{i+1} = \Sigma_i \cup \{\alpha_i\}$, which is shown by the following claim.

Claim 4. $\forall \Sigma, \alpha, \text{ if } \Sigma \cup \{\alpha\} \vdash \neg \alpha, \text{ then } \Sigma \vdash \neg \alpha.$

Proof. To prove this claim, it suffices to show $\vdash (\alpha \rightarrow \neg \alpha) \rightarrow \neg \alpha$ based on deduction theorem, which is a tautology. \Box

Now we show the $\Sigma' = \cup_{i=1}^{\infty} \Sigma_i$ is maximally consistent. To prove it, it suffices to show that $\forall \alpha_i, i \in N, \Sigma' \vdash \alpha$ or $\Sigma' \vdash \neg \alpha$. By requirement 2), Σ_i \vdash α_i or Σ_i \vdash $\neg \alpha_i$. Now we are going to show Σ' \vdash α_i or $\Sigma' \vdash \neg \alpha_i.$

b.w.o.c, suppose Σ' is inconsistent. In this case, for some α, Σ' \vdash α and $\Sigma' \vdash \neg \alpha$. Let $\beta_1, \dots \beta_k$ be the proof of α from Σ' and $\gamma_1, \dots, \gamma_l$ be the proof of $\neg\alpha$ from Σ' .

Each β_i that is an assumption from Σ' belongs to some Σ_{m_i} , and each γ_i that is an assumption from Σ' belongs to some $\Sigma_{m_j}.$ Since both formal proofs of α and of $\neg\alpha$ are finite, there is some i^* that is bigger than all of these m_i 's and m_j 's. Therefore, for each $beta_i$ or $gemma_j$ that are used as assumptions, $\beta_i, \gamma_j \in \Sigma_{i^*}.$ Now by monotonicity, $\Sigma_{i^*} \vdash \alpha$ and $\Sigma_{i^*}\vdash\neg\alpha,$ which is a contradiction to requirement 2).

Theorem 5. *In a sound proof system, every consistent* Σ *is satisfiable.*

 \Box

Also called the completeness theorem.

Proof. Let Σ' be a maximally consistent set of $w.f.f.$ ss.t. $\Sigma \subseteq \Sigma'$. Define a truth assignment $V_{\Sigma'}$ as follows: $V_{\Sigma'}(P_i) = T$ iff $\Sigma' \vdash P_i$ where P_i is a propositional variable. Now extend it into $V_{\Sigma'}(\alpha_i) = T$ iff $\Sigma' \vdash \alpha_i$.

Claim 5. *For every formula* α *,* $\overline{V}_{\Sigma'}(\alpha) = T$ *iff* $\Sigma' \vdash \alpha$ *, where* $\overline{V}_{\Sigma'}$ *is the extension of* $V_{\Sigma'}$ *in the infinite set of w.f.f., and* $\overline{V}_{\Sigma'}$ *is the truth assignment that satisfies* Σ ′ *.*

Proof. By generalized induction on the set of all $w.f.f.: I(\mathcal{P}, \{\rightarrow, \neg\})$ where P is the set of propositional variables, and $\{\rightarrow, \neg\}$ are the adequate connectives (adequate means that the set of connectives are enough to map all truth assignment to the truth result). $I(\mathcal{P}, \{\rightarrow, \neg\})$ means that all *w.f.f.*s that are built from P and $\{\rightarrow, \neg\}$.

Induction base. $\alpha \in \mathcal{P}$.

 $\leftarrow : \overline{V}_{\Sigma'}(\alpha) = T,$ then $\Sigma' \vdash \alpha$ by definition of $V_{\Sigma'}.$

 \rightarrow : Suppose $\Sigma' \nvdash \alpha$, then $\overline{V}_{\Sigma'}(\alpha) = F$ still by the definition.

Remember the relation between truth assignment and the proof symbol. Σ ⊢ α means that for every truth assignment V

Logic for CS

 $s.t. V(\Sigma) = T$, then $V(\alpha) = T$, which can be simplified as $V_{\Sigma}(\alpha) = T.$

Induction step. Assume the claim holds for α and for β , we need to show that for $\neg \alpha$ and $\alpha \rightarrow \beta$.

 $\neg \alpha$:

 \leftarrow : If $\Sigma' \vdash \neg \alpha$, by the consistency, $\Sigma' \nvDash \alpha$. So by the induction hypothesis, $\overline{V}_{\Sigma'}(\alpha) = F$, so by the truth table, $\overline{V}_{\Sigma'}(\neg \alpha) = T$.

 \rightarrow : Assume $\Sigma' \nvDash \neg \alpha$, then by its maximality, $\Sigma' \vdash \alpha$. So by the induction hypothesis, $\overline{V}_{\Sigma'}(\alpha) = T$, so by the truth table, $\overline{V}_{\Sigma'}(\neg \alpha) =$ F.

 $\alpha \rightarrow \beta$:

 $\leftarrow : \Sigma' \nvdash (\alpha \to \beta),$ Since $\vdash \beta \to (\alpha \to \beta),$ $\Sigma' \nvdash \beta$. By the induction hypothesis, $\overline{V}_{\Sigma'}(\beta) = F$. Now we need to show that $\overline{V}_{\Sigma'}(\alpha) = T$. *b.w.o.c*, assume $\overline{V}_{\Sigma'}(\alpha) = F$. By the induction hypothesis, $\Sigma \nvDash \alpha$, and by the maximality of $\Sigma', \Sigma' \vdash \neg \alpha$. And by $\vdash \neg \alpha \rightarrow (\alpha \rightarrow \beta)$, Σ' \vdash $(\alpha \rightarrow \beta)$, which contradicts Σ' \nvdash $(\alpha \rightarrow \beta)$. Therefore, $\overline{V}_{\Sigma'}(\alpha) = F$, so this case is proved.

 $\rightarrow : \Sigma' \vdash (\alpha \rightarrow \beta)$. Assume $\Sigma' \vdash \alpha$, in which case $\Sigma' \vdash \beta$ by modus ponens. Using the induction hypothesis, $\overline{V}_{\Sigma'}(\alpha) = T$ and $\overline{V}_{\Sigma'}(\beta) =$ T, so $\overline{V}_{\Sigma'}(\alpha \to \beta) = T.$ Otherwise, $\Sigma' \nvDash \alpha$, so by the induction hypothesis, $\overline{V}_{\Sigma'}(\alpha) = F$, so by truth table, $\overline{V}_{\Sigma'}(\alpha \to \beta) = T$. \Box

 \Box

Proof. Σ is satisfiable by all-truth assignemnt, so it's consistent. To show it's maximally consistent, we need to show for every α , if $\Sigma \nvdash \alpha$, then $\Sigma \cup {\alpha}$ is inconsistent. If $\Sigma \nvdash \alpha$, then $\Sigma \nvdash \alpha$, then $\Sigma \cup {\alpha}$ is unsatisfiable, so it's inconsistent.

Based on the definition of the truth table, $V_{\Sigma} = T$. \Box

Lemma 2. *If* $\Sigma \nvDash \alpha$ *and* Σ *is consistent, then* $\Sigma \cup \{\neg \alpha\}$ *is consistent.*

Proof. Suppose $\Sigma \cup {\neg \alpha}$ is inconsistent and Σ is consistent, then $\exists \beta, \Sigma \cup \{\neg \alpha\} \vdash \beta$ and $\Sigma \cup \{\neg \alpha\} \vdash \neg \beta$. By deduction theorem, $\Sigma \vdash \neg \alpha \rightarrow \beta$ and $\Sigma \vdash \neg \alpha \rightarrow \neg \beta$. Since Σ is consistent, $\Sigma \vdash \beta$ and Σ $\vdash \neg \beta$ do not hold together.

Assume $\Sigma \vdash \beta$, from $\Sigma \vdash \neg \alpha \rightarrow \neg \beta$, we know $\Sigma \vdash \beta \rightarrow \alpha$, so $\Sigma \vdash \alpha$, contradicting the assumption that $\Sigma \nvdash \alpha$.

Assume $\Sigma \nvDash \beta$, from $\Sigma \vdash \neg \alpha \rightarrow \beta$, we know $\Sigma \vdash \neg \beta \rightarrow \alpha$, so $\Sigma \vdash \alpha$, contradicting the assumption that $\Sigma \nvdash \alpha$.

Since Σ is not maximally consistent, so Σ may not prove either β or $\neg \beta$. In this situation, β is α or $\neg \alpha$ and obviously $\Sigma \cup {\neg \alpha}$ can only prove either β or $\neg \beta$, contraicting $\Sigma \cup {\neg \alpha}$ $\vdash \beta$ and $\Sigma \cup {\neg \alpha}$ $\vdash \neg \beta$. \Box

Theorem 6 (Completeness). *For all* α *and any set of w.f.f.s* Σ *, if* Σ *is consistent and* $\Sigma \models \alpha$ *, then* $\Sigma \vdash \alpha$ *.*

Proof. Suppose $\Sigma \nvDash \alpha$, then $\Sigma \cup {\neg \alpha}$ is consistent. Therefore, $\Sigma \cup$ $\{\neg \alpha\}$ is satisfiable, so $\Sigma \nvDash \alpha$. \Box

Corollary 4. Σ *is maximally consistent, iff it is maximally satisfiable.*

Proof. \rightarrow : Since every α , $\Sigma \vdash \alpha$ or $\Sigma \vdash \neg \alpha$, by soundness theorem, $\Sigma \models \alpha$ or $\Sigma \models \neg \alpha$.

 \leftarrow : Since for every α , $\Sigma \vDash \alpha$ or $\Sigma \vDash \neg \alpha$, we get $\Sigma \vdash \alpha$ or $\Sigma \vdash \neg \alpha$ by completeness theorem. \Box

Is there a polynomial algorithm to figure out a give α is satisfiable? Does there exist a proof P_f of α such that $|P_f| < Poly(|\alpha|)$ where $Poly$ is a polynomial function.

Does there exist any sound and complete proof systemw with the above property?