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ABSTRACT
There are increasing uses of deep learning (DL) compilers to gener-
ate optimized code, boosting the runtime performance of DLmodels
on specific hardware. Like their traditional counterparts, DL com-
pilers can generate incorrect code, resulting in unexpected model
behaviors that may cause catastrophic consequences in mission-
critical systems. On the other hand, the DL models processed by
DL compilers differ fundamentally from imperative programs in
that the program logic in DL models is implicit. As such, various
characteristics of the bugs arising from traditional compilers need
to be revisited in the context of DL compilers.

In this paper, we present the first systematic study of DL compiler
bugs by analyzing 603 bugs arising in three popular DL compilers
(i.e., TVM from Apache, Glow from Facebook, and nGraph from
Intel). We analyzed these bugs according to their root causes, symp-
toms, and the stages where they occur during compilation. We
obtain 12 findings, and provide a series of valuable guidelines for
future work on DL compiler bug detection and debugging. For ex-
ample, a large portion (nearly 20%) of DL compiler bugs are related
to types, especially tensor types. The analysis of these bugs helps
design new mutation operators (e.g., adding type cast for a tensor
to promote implicit type conversion in subsequent tensor computa-
tions) to facilitate type-related bug detection. Further, we developed
TVMfuzz as a proof-of-concept application of our findings to test
the TVM DL compiler. It generates new tests based on TVM’s orig-
inal test suite. They expose 8 TVM bugs that are missed by the
original test suite. The result demonstrates the usefulness of our
findings.
∗Junjie Chen is the corresponding author.
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1 INTRODUCTION
Deep learning (DL) has emerged as a promising computational par-
adigm to solve problems in various domains, such as autonomous
driving cars [10], face recognition [61], aircraft collision avoid-
ance systems [42], and software engineering [9, 20, 68, 70]. Various
DL frameworks (e.g., TensorFlow [5], PyTorch [4], and Keras [2])
are developed to facilitate the implementation of DL models (e.g.,
convolutional neural network (CNN) [46], recurrent neural net-
work (RNN) [57], and generative adversarial network (GAN) [30]).
Specific hardware has also been designed to accelerate the execu-
tion of these DL models. Examples include Google TPU [41], Intel
NNP [36], and Apple Bionic [43]. Driven by immense demands,
there are many DL frameworks and hardware products on the mar-
ket. Coding efficient DL models to cater to these frameworks and
hardware products is challenging [33, 47].

To alleviate the burden, DL compilers were proposed [47]. They
take a DL model programmed on a DL framework as input and gen-
erate hardware-optimized code as output. Multiple DL compilers
are now available in the market. The dominant ones are TVM [6]
from Apache, Glow [1] from Facebook, and nGraph [3] from In-
tel. Like other software systems, DL compilers are subject to bugs.
Buggy DL compilers can be devastating when their incorrectly
generated codes are deployed for mission-critical DL applications.

https://doi.org/10.1145/3468264.3468591
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Besides, DL compiler bugs complicate the fault diagnosis of anoma-
lous behaviors in DL applications.

DL compilers may not share the same characteristics as tradi-
tional compilers [47]. On one hand, the processed subjects are very
different. The DL models processed by DL compilers do not have
explicit logical structures like those in the imperative programs pro-
cessed by traditional compilers. On the other hand, DL compilers
have their own multi-level IR (Intermediate Representation) and a
large number of DL-specific optimizations (such as operator fusion).
Therefore, existing test generation and bug localization techniques
for traditional compilers may not work for DL compilers.

This motivates us to conduct the first systematic study on DL
compiler bugs to facilitate the understanding of DL compiler bugs.
In particular, we investigated the root causes of DL compiler bugs,
the symptoms that bugs exhibit, and the stages of a DL compiler
in which bugs occur. Our study is based on three most popular
DL compilers, including TVM [6] from Apache, Glow [1] from
Facebook, and nGraph [3] from Intel, as experimental subjects.
These three compilers are diverse in nature, e.g., the dynamic tensor
shape is supported by TVM and nGraph but not Glow, and auto-
tuning is supported by TVM but not the other two. The diversity
facilitates the generalizability of our findings. We studied 603 bugs
that were collected and labeled manually according to a systematic
process (to be presented in Section 3.2).

From our manual analysis on these DL compiler bugs, we iden-
tified 12 root causes and 6 bug symptoms, and obtained 12 major
findings. Based on these findings, we provided a series of guidelines
for DL compiler bug detection and debugging in the future. In par-
ticular, we further made a preliminary proof-of-concept application
of our findings by designing a simple but effective method TVM-
fuzz for testing TVM. The design of TVMfuzz is inspired by some
findings in our study. It can generate new tests based on TVM’s
original test suite. We ran TVMfuzz for two days. It detected 8
TVM bugs that cannot be detected by TVM’s original test suite. The
result demonstrates the usefulness of our findings.

To sum up, we make four major contributions.

• We conduct the first systematic study on DL compiler bugs
based on 603 bugs from three popular and diverse DL com-
pilers.

• We provide a classification of root causes of DL compiler
bugs and symptoms that DL compiler bugs exhibit.

• We discuss and provide a series of guidelines for DL compiler
bug detection and debugging in the future.

• We conduct a preliminary proof-of-concept application of
our findings by designing a testing tool for the TVM compiler.
It exposes 8 TVM bugs that cannot be detected by TVM’s
original test suite.

2 DEEP LEARNING COMPILERS
DL models are popularly programmed on top of DL frameworks
(such as TensorFlow [5], PyTorch [4], and Keras [2]). Various kinds
of hardware (e.g., Google TPU [41], Intel NNP [36], and Apple
Bionic [43]) are also designed to accelerate the execution of these
models. To attain the acceleration, a DL model based on a specific
framework is deployed with code that is compiled for optimized
execution on the deployed hardware. Various DL compilers have
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Figure 1: The Architecture of DL compilers

been developed to take a DL model as input and generate hardware-
optimized code as output.

Although DL compilers are built with functional components
(e.g., front end and back end) similar to traditional compilers, these
two types of compilers have different characteristics. Firstly, DL
compilers take DL models as input while traditional compilers take
programs as input. There are fundamental differences in the control-
and data-flow structures between DL models and programs. Sec-
ondly, DL compilers have their own multi-level IR and DL-specific
optimizations (such as operator fusion and layout transformation).
Figure 1 shows the general architecture of DL compilers, which
contain the following three major stages:

• Model Loading is a stage responsible to load a DL model
and transform it into a computation graph representation
(i.e., high-level IR). High-level IR, which aims to construct the
control flow and the dependency between data and operators,
is hardware-independent.

• High-Level IR Transformation is a stage responsible to
conduct hardware-independent optimizations on high-level
IR to reduce redundancy and improve efficiency. It gener-
ates an optimized computation graph for the next stage. The
optimizations can be general-purpose or DL-specific. They
include node-level optimizations (e.g., zero-dim-tensor elimi-
nation), block-level optimizations (e.g., operator fusion), and
dataflow-level optimizations (e.g., layout transformation).

• Low-Level IR Transformation is a stage responsible to
transform high-level IR to low-level IR, which is sufficiently
fine-grained to capture hardware characteristics. The trans-
formation also involves hardware-specific optimizations (such
as hardware intrinsic mapping and memory latency hiding)
on the low-level IR. Then, the optimized low-level IR is com-
piled to generate code deployed on the specific hardware.

We selected three popular DL compilers (i.e., TVM [6] from
Apache, Glow [1] from Facebook, and nGraph [3] from Intel) as
experimental subjects in our study. All the three compilers are built
with the architecture in Figure 1, but they are also enough diverse,
especially in the low-level IR transformation stage. Specifically,
TVM adopts machine learning methods to automatically determine
the optimal optimizations for a specific hardware. Glow designs
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Table 1: Statistical Information on Datasets

Compiler Duration #PR #Bug

TVM 2019-07-30 ∼ 2020-11-08 845 318
Glow 2019-07-12 ∼ 2020-10-21 271 145
nGraph 2019-04-25 ∼ 2020-07-25 245 140

Total — 1,361 603

a lowering phase in this stage to reduce the operator space by
transforming each operator into a sequence of low-level primitives.
nGraph does not have its own low-level IR. Its low-level IR trans-
formation is implemented by integrating existing kernel libraries
(e.g., cuDNN [22]) or coordinating with PlainML [73].

3 METHODOLOGY AND CLASSIFICATION
3.1 Data Collection
In the study, we used the three most popular DL compilers as
subjects, including TVM [6] fromApache, Glow [56] from Facebook,
and nGraph [24] from Intel. Since our study aims to investigate the
characteristics of DL compiler bugs, we collected closed and merged
pull requests that are responsible to fix bugs from their GitHub
repositories following the existing work [29, 53]. The reasons why
using such pull requests are twofold: 1) Bugs involved in such
pull requests have been accepted and fixed by developers; 2) Such
pull requests contain more comprehensive information (e.g., code
changes, links to related issues, and discussions among developers)
about the involved bugs, which facilitates to understand these bugs.
In fact, there are several categories of pull requests with different
purposes (such as bug fixing, refactoring, and adding new features).
Hence, we need to identify the pull requests with the purpose of bug-
fixing among the collected pull requests for our study. Specifically,
following the existing study [29], we collected the pull requests
whose tags or titles contain at least one bug-relevant keywords (i.e.,
fix, defect, error, bug, issue, mistake, incorrect, fault, and flaw), and
call such pull requests bug-fixing pull requests.

Table 1 presents the detailed information on our datasets. Since
we need to manually analyze each bug, it is unaffordable for us
to collect all bugs for manual inspection. Therefore, we collected
the bugs for a given duration (i.e., over 15 months) shown in the
second column in Table 1. The third column presents the number
of collected bug-fixing pull requests for the given duration. After
obtaining bug-fixing pull requests, the first two authors manually
analyzed and labeled them independently (the process will be de-
scribed in Section 3.2), and the last column presents the number
of bugs identified from these bug-fixing pull requests. In total, we
collected 1,361 bug-fixing pull requests and identified 603 bugs,
including 318 TVM bugs, 145 Glow bugs, and 140 nGraph bugs. The
dataset can be found at our project homepage1.

3.2 Classification and Labeling Process
In the study, we investigated each bug from three aspects: 1) the
root causes of bugs, 2) the symptoms that bugs exhibit, and 3) the
stages of a DL compiler in which bugs occur. To label the root cause
1https://github.com/ShenQingchao/DLCstudy.

and symptom of each bug, we adopted the taxonomies of root causes
and symptoms from the existing work [29, 37, 38, 58, 62, 63] as the
initial taxonomies, and then adapted them to DL compiler bugs
through an open-coding scheme following the existing work [38].
Regarding the stages of DL compilers, they have been introduced
in Section 2. More specifically, one author first went through all
the pull requests to determine the root-cause and symptom cate-
gories of our collected DL compiler bugs based on the initial general
taxonomy, including adding DL compiler specific categories (e.g.,
node type problem) and removing irrelevant categories. Then, the
first two authors independently labeled these pull requests. Follow-
ing the existing work [38], we measured the inter-rater agreement
among them via the Cohen’s Kappa coefficient [64]. In particular,
the Cohen’s Kappa coefficient was nearly 30% for the first 5% of
labeling results, and thus we conducted a training session about
labeling. After that, the first two authors labeled 10% of pull re-
quests (including the previous 5% of pull requests), and the Cohen’s
Kappa coefficient achieved 85%. After further discussion and in-
vestigation for these disagreements, the Cohen’s Kappa coefficient
was always more than 95% in subsequently labeling studies (i.e.,
labeling 20%∼100% of pull requests with the interval of 10%). In
each labeling study, the first two authors discussed the disagree-
ments with the third author, and finally all the bugs were labeled
consistently.

During the labeling process, we filtered out the pull requests
that are actually irrelevant to bug fixing. Some pull requests fixed
more than one bug, and we labeled each of them as an individual
bug following the existing work [29].

3.3 Root Causes of DL Compiler Bugs
Based on the above classification and labeling process, all the root
causes of DL compiler bugs are presented as follows.

3.3.1 API Misuse. This category of bugs occur due to misunder-
standing of APIs, including 1) wrong API: developers use a wrong
API or wrong arguments in an API; 2) condition missing/redun-
dancy: developers miss to use (or redundantly use) a condition
check for an API; 3) API missing/redundancy: developers miss
to use (or redundantly use) an API.

3.3.2 Incompatibility. This category of bugs occur under the three
scenarios: 1) there are API compatibility issues within a DL compiler
caused by API evolution, called internal (API) incompatibility;
2) there are API compatibility issues between a DL compiler and
third-party libraries (e.g., TensorFlow and NumPy), called external
(API) incompatibility; 3) there are compatibility issues between
a DL compiler and external resources, called resource incompati-
bility, for example, the used image is too large to be incompatible
with the DL compiler or some characteristics of the target device
are incompatible with the DL compiler.

3.3.3 Type Problem. This category of bugs involves type-related
problems, such as type conversion and type inference. According to
the characteristics of DL compilers, we further divide this category
into three subcategories: 1) node type problem: a DL compiler
works on a computational graph, where nodes represent the atomic
DL operators (such as convolution and pooling) and edges rep-
resent the tensors [47]. Each node takes zero or more tensors as

https://github.com/ShenQingchao/DLCstudy
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input and produces a tensor as output. This subcategory refers to
the problem involving the types of nodes; 2) tensor type prob-
lem: this subcategory refers to the problem involving the types of
tensors. Specifically, a tensor is a multi-dimensional matrix con-
taining elements of a single data type. 3) conventional data type
problem: besides nodes and tensors, there are also conventional
variables widely used in the development of traditional software
systems. This subcategory refers to the problem involving the types
of conventional variables.

3.3.4 Tensor Shape Problem. This category of bugs is related to
tensor shape or layout. Specifically, Tensor shape describes the
number of elements in each dimension. Layout describes how the
tensor is represented in memory, which plays an important role
in model performance. These bugs are triggered during the opera-
tion of tensor shape matching, tensor shape transformation, tensor
shape inference, data layout transformation, etc.

3.3.5 Incorrect Numerical Computation. This root cause involves
incorrect numerical computations, values, or usages, such as using
incorrect operators or operands, dividing by 0, missing operands,
or redundant operands.

3.3.6 Incorrect Assignment. This root cause involves that a variable
is incorrectly initialized or assigned, or a variable lacks initializa-
tion.

3.3.7 Incorrect Exception Handling. This category of bugs occurs
due to incorrect exception handling, for example, a DL compiler 1)
does not throw an exception when it should, 2) throws an exception
when it should not, and 3) provides incorrect/imprecise exception
messages.

3.3.8 Misconfiguration. This category of bugs is caused by incor-
rect configurations in a DL compiler, such as misconfigurations in
the file CMake.

3.3.9 Concurrency. This root cause involves incorrect operations
on concurrency-oriented structures (e.g., locks, threads, and critical
regions).

3.3.10 Incorrect Code Logic. Code logic refers to the implemen-
tation logic of an algorithm (e.g., an optimization on the compu-
tational graph). This category of bugs involves a number of state-
ments or blocks. According to the components where bugs occur,
this category of bugs are divided into two subcategories:

• Incorrect Optimization Code Logic. Optimization is an
important functionality of a DL compiler. As presented in
Section 2, a DL compiler tends to contain a number of opti-
mizations (including high-level optimizations and low-level
optimizations). This subcategory of bugs occurs at the com-
ponent of various optimizations.

• Incorrect Non-optimization Code Logic. This subcate-
gory of bugs occurs at the other components except for DL
compiler optimizations.

3.3.11 Typo. This root cause is due to the carelessness of develop-
ers, e.g., “default” is mistakenly written as “defualt”.

3.3.12 Others. Each case in this root cause occurs very infrequently
and does not belong to any other root causes.

3.4 Symptoms of DL Compiler Bugs
Based on the above classification and labeling process, all the symp-
toms of DL compiler bugs are presented as follows:

3.4.1 Crash. Crash means that a DL compiler terminates unexpect-
edly during compilation, which usually produces an error message.

3.4.2 Wrong Code. Wrong code means that a DL compiler behaves
in an unexpected way without a crash, which produces a wrong
result or middle result (e.g., the non-equivalent IR after an optimiza-
tion).

3.4.3 Bad Performance. This symptom means that the time cost or
memory consumption spent by a DL compiler is much larger than
developers’/users’ expectation (e.g., the performance achieved on
the previous version during regression testing or the performance
required by specific hardware).

3.4.4 Hang. This symptom means that a DL compiler keeps run-
ning for a long period of time without producing the expected
result.

3.4.5 Build Failure. This symptom means that the installation of a
DL compiler terminates unexpectedly.

3.4.6 Unreported. There are also DL compiler bugs whose symp-
toms cannot be identified by analyzing the corresponding pull
requests (including code changes, discussions, and related issues).

3.5 Research Questions
Our study aims to address the following five research questions
(RQs):

RQ1: What is the occurrence frequency of different root
causes of DL compiler bugs? The root causes facilitate the un-
derstanding of the nature of DL compiler bugs, which is helpful to
detect, localize, and fix bugs. Moreover, it is interesting to explore
the root causes specific to DL compiler bugs and also investigate
whether the conclusions on common root causes between DL com-
piler bugs and traditional software bugs are consistent or not.

RQ2:What is the occurrence frequency of different symp-
toms of DL compiler bugs? The symptoms facilitate the under-
standing of the consequences of DL compiler bugs, which is helpful
to triage them and assess their impacts. Also, according to the bug
symptoms, it is helpful to design DL compiler testing methods with
effective test oracles.

RQ3: What is the relationship between root causes and
symptoms of DL compiler bugs? Understanding root causes in
RQ1 and symptoms in RQ2 is the first step to investigate DL com-
piler bugs. By mapping them (i.e., understanding which root cause
is more likely to produce a specific bug symptom), it is helpful to
provide more information to deal with bugs.

RQ4: Which stages in DL compilers are more fragile to
bugs? DL compilers contain three major stages and the fragility
of different stages may be different. Identifying bug-prone stages
is helpful to guide developers to allocate their efforts during the
process of DL compiler testing and maintenance.

RQ5: Do the bugs of different DL compilers have common-
ality? Identifying the relationship among the bugs in different DL
compilers is helpful to design general bug detection and localization
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Figure 2: Bug Distribution by Root Causes

Table 2: Bug Distribution by Type Problem Subcategories

Compiler Tensor Type Conventional Type Node Type

TVM 31 16 12
Glow 20 8 3
nGraph 11 10 5

Total 62 34 20

methods for DL compilers, even achieve the goal of cross-compiler
bug detection.

4 RESULTS AND ANALYSIS
In this section, we present and discuss the experiment results for
the five RQs.

4.1 RQ1: Root Causes
Figure 2 shows the number of DL compiler bugs by their root causes.
From this figure, Type Problem is the most common root cause. It
accounts for 116 bugs, including 59 in TVM, 31 in Glow, and 26 in
nGraph. Table 2 further shows the bug distribution by subcategories.
We find that Tensor Type Problem is the most common subcategory.
Specifically, among 116 bugs in Type Problem, 62 bugs are caused
by Tensor Type Problem, 34 bugs are caused by Conventional Data
Type Problem, and 20 bugs are caused by Node Type Problem. This
is because all the DL computations rely on one or more tensors
and both IR and a large number of optimizations in DL compilers
involve tensors. Moreover, tensor type is an important property
in a tensor. Therefore, there are a large number of operations on
type conversion (especially implicit type conversion) and type infer-
ence during compilation. The result indicates that handling types,
especially tensor types, in DL compilers is very challenging and
deserves more attention. Figure 3 shows an example of Tensor Type
Problem bug2, where PyTorch expects the output tensor type for
the operator to be float32, but the corresponding Glow operator
outputs float16, leading to type mismatch. Thus, the fix is to add an
upcast operator to convert its output tensor type to float32.

2https://github.com/pytorch/glow/pull/4945.

+     if (is4Bit) {
+        auto *CT = F.createConvertTo(
+              "ConvertEmbeddingBag4BitRowwiseOffsetsOutput", 
+ EB, ElemKind::FloatTy);
+         return addValueMapping(outputs[0], CT->getResult());
+     } else {
+         return addValueMapping(outputs[0], EB->getResult());
+     }

- return addValueMapping(outputs[0], EB->getResult());

Figure 3: A Tensor Type Bug Example from Glow#4945

+   target_shape = tuple((-1, weight_tensor_shape[1]))

- input_size = 1
- for _, shape in enumerate(input_tensor_shape):
- input_size *= shape
- batch_size = int(input_size / weight_tensor_shape[1])
- target_shape = tuple((batch_size, weight_tensor_shape[1]))

Figure 4: A Tensor Shape Bug Example from TVM#6038

Finding 1: Type Problem is the most common root cause,
accounting for 19.23% of DL compiler bugs. Among these
bugs, Tensor Type Problem bugs are the most common.

Incorrect Code Logic is the second most common root cause,
accounting for 16.92% DL compiler bugs, including 55 bugs caused
by Incorrect Optimization Code Logic and 47 bugs caused by Incor-
rect Non-optimization Code Logic. Due to the rapid development
of deep learning, DL compilers are also frequently updated so as
to incorporate the rapid advancement in DL algorithms and hard-
ware. Moreover, for new features in DL frameworks and hardware,
the implementation in DL compilers supporting the corresponding
features tends to involve complex code logic. Therefore, that may
lead to various technical debts occurring in the implementation of
DL compilers. Optimization code tends to be more complex than
the non-optimized one due to the complexity in the optimization
algorithms and the handling of different kinds of hardware. As a re-
sult, the bugs arising from Incorrect Optimization Code outnumber
those arising from Incorrect Non-optimization Code.

Finding 2: Code logic bugs are common due to the im-
plementation complexity of DL compilers. These bugs are
more often caused by Incorrect Optimization Code Logic
than Incorrect Non-optimization Code Logic.

The third most common root cause is Tensor Shape Problem
according to Figure 2. It accounts for 13.27% of bugs, including
48 in TVM, 11 in Glow, and 21 in nGraph. Figure 4 shows an ex-
ample of Tensor Shape Problem bugs3, where the fully connected
converter used the shapes from the TFLite model to reshape the data
tensor, but the TFLite model shapes do not reflect those provided
by the data_shape parameter in from_tflite(). Thus, the fix is that

3https://github.com/apache/tvm/pull/6038.

https://github.com/pytorch/glow/pull/4945
https://github.com/apache/tvm/pull/6038


ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung, and Xiang Chen

Table 3: Distribution of API Misuse Bugs

Compiler API
M/R

Condition
M/R

Wrong API
Receiver Name Args Total

TVM 1 9 3 9 7 19
Glow 2 2 2 4 2 8
nGraph 2 5 1 5 5 11

Total 5 16 6 18 14 38
* M/R is short for Missing/Redundancy.

the reshape is always set to (-1, n_units) without needing to calcu-
late a batch size for the particular operator. Similar to the Tensor
Type Problem, this root cause also concerns the tensor computa-
tion in DL, and indeed tensor shape is also an important property
in a tensor. The result indicates that tensor operations are error-
prone regardless the operations are type-related or shape-related.
Therefore, more care should be devoted to tensor operations in DL
compilers.

Finding 3: Tensor Shape Problem is the third most com-
mon root cause, accounting for 13.27% of DL compiler
bugs.

While the root causes (e.g., Tensor Type Problem, Tensor Shape
Problem, and Incorrect Optimization Code Logic) specific to DL
compilers are significant, some root causes common to DL compil-
ers and traditional software systems are notable, e.g., API Misuse
and Incompatibility. Therefore, we further analyzed whether they
follow similar patterns or not by taking the two relatively frequent
common root causes (i.e., API Misuse and Incompatibility) as the
representatives.

Following the practice of existingwork [8, 75], we divide the bugs
caused by API Misuse into three subcategories as shown in Table 3.
According to the existing studies on MuBench [7, 8], which is one
of the most widely-studied benchmarks in the area of API misuse
and contains 90 API misuses from real-world Java projects, API
Missing/Redundancy is the most common cause but it is the least
common in DL compilers. In DL compilers, the most common API
misuses concern Wrong API, among which 15.79% are caused by
wrong receivers, 47.37% are caused bywrong API names, and 36.84%
are caused by wrong arguments. It suggests that developers may
not often understand the correct API usage scenarios, especially
when multiple similar APIs exist.

Table 4 presents the distribution of Incompatibility bugs by sub-
categories. The bug distribution differs significantly from that of DL
program bugs [38]. For example, External Incompatibility (73.17%)
accounts more often than Internal Incompatibility (14.63%) and Re-
source Incompatibility (12.2%) for DL compiler bugs, while Internal
Incompatibility accounts most often for DL program bugs. The rea-
son may be that the third-party libraries used in DL compilers are
also frequently evolving (such as various DL frameworks, e.g., Ten-
sorFlow has nearly 50 commits per day on average and has already
had 133 releases till February, 2021) and are relatively complex
(such as various fundamental libraries relevant to systems, even
hardware). Indeed, by analyzing the 30 External Incompatibility

Table 4: Distribution of Incompatibility Bugs

Compiler Internal External Resource

TVM 3 19 4
Glow 2 6 1
nGraph 1 5 0

Total 6 30 5

Table 5: Bug Distribution by Symptoms

Compiler Crash WC BP Hang BF Unreported

TVM 207 76 6 4 13 12
Glow 85 35 2 1 14 8
nGraph 66 40 3 0 23 8

Total 358 151 11 5 50 28

*WC: Wrong Code *BP: Bad Performance *BF: Build Failure

bugs, 12 bugs are due to the incompatibility with DL frameworks
and 7 bugs are due to the incompatibility with fundamental libraries
relevant to systems.

Finding 4: API Misuse and Incompatibility bugs manifest
in different ways between DL compilers and traditional
software, calling for different bug detection strategies.

4.2 RQ2: Symptoms
Table 5 presents the distribution of DL compiler bugs by symptom
categories. It shows that Crash is the most common symptom in
all the three DL compilers. There are 207, 85, and 66 bugs that
exhibit the Crash symptom in TVM, Glow, and nGraph, respec-
tively. Detection of crashes does not require explicit test oracles.
Therefore, the large percentage of crashes suggests the potentials of
augmenting the existing test suite with the generated ones. Besides,
it suggests the opportunities to design effective localization and de-
duplicate methods based on the descriptive information collected
from crashes.

Finding 5: Crash is the most common symptom of DL
compiler bugs, accounting for 59.37% of bugs.

Wrong Code occurs when DL compilers generate incorrectly
compiled code. It is a common symptom according to Table 5,
accounting for 23.9% TVM bugs, 24.14% Glow bugs, and 28.57%
nGraph bugs, respectively. The symptom is not as obvious as Crash.
Specifically, the output of a DL compiler is an optimized model in
some optimized IR. Determining the correctness of an optimized
model or IR is hard due to its complexity. Therefore, testing such
bugs is challenging because test oracles are difficult to define. Fur-
ther, the adverse impact of this category of bugs is severe since
the bugs could propagate to the models subsequently built using
the buggy compiled code. To sum up, more attention should be
paid to design effective testing methods for wrong code bugs from
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+ operator int64_t() const {
+   return static_cast<int64_t>(fp16_ieee_to_fp32_value(data_));
+  }

+ operator int32_t() const {
+    return static_cast<int32_t>(fp16_ieee_to_fp32_value(data_));
+  }

- operator int32_t() const { return static_cast<int32_t>(data_); }

- operator int64_t() const { return static_cast<int64_t>(data_); }

……

Figure 5: A Wong Code Bug Example from Glow PR#4949

both academia and industry. Figure 5 shows a Wrong Code bug
example4, where Glow incorrectly calls static_cast on float16
directly when casting float16 to int32 or int64, resulting in a wrong
result as float16 is defined using a proxy type uint16_t. Thus, the fix
is that when casting float16 to int type, it first converts it to float32
and then conducts static cast.

Finding 6: Wrong Code is the second most common symp-
tom of DL compiler bugs, accounting for 25.04% of bugs.
Generating high-quality test oracles for Wrong Code bugs
is challenging.

According to Table 5, the symptoms of Hang and Bad Perfor-
mance are uncommon, while the symptom of Build Failure is non-
negligible. There are only 5 bugs with the Hang symptom and 11
bugs with Bad Performance symptom in total, while the percentage
of bugs with the Build Failure symptom ranges from 4.09% to 16.43%
across the three compilers. It indicates that configuring and build-
ing DL compilers require non-trivial efforts. In particular, Build
Failure bugs occurs more often in nGraph (16.43%) than in TVM
(4.09%) and Glow (9.66%). The reason may be that 1) nGraph (3,837)
contains more LOC (lines of code) in configuration files than TVM
(2,128) and Glow (3,222), and 2) both TVM and Glow provide more
detailed configuration instructions than nGraph. Therefore, the pro-
vision of better-organized configuration options and more detailed
configuration instructions in DL compilers, especially nGraph, is
desired.

Finding 7: Hang and Bad Performance are uncommon
symptoms (0.83% and 1.82%), while Build Failure is a non-
negligible symptom (8.29% ) in DL compilers.

4.3 RQ3: Root Causes and Symptoms
Table 6 presents the number of DL compiler bugs caused by each
root cause with each symptom. As the most common root cause,
Type Problem occurs in almost all categories of symptoms (except
Build Failure). Another root cause that can result in the same cate-
gories of symptoms is Incorrect Optimization Code Logic, which is
also common. That is, the bugs caused by Type Problem and Incor-
rect Optimization Code Logic not only occur frequently, but also
produce a wide variety of effects. Moreover, the two categories of
4https://github.com/pytorch/glow/pull/4949.

bugs tend to be specific to DL compilers. Therefore, more attention
from both DL compiler developers and researchers should be paid
to detecting, localizing, and fixing these bugs.

The symptom of Build Failure is also non-negligible, but are
not exhibited by the bugs induced by the common root causes. As
shown in Table 6, Build Failure bugs are mainly caused by Incorrect
Configuration and Incompatibility. These bugs are mostly caused
by errors in configurations and dependencies. Our dataset of these
bugs can facilitate the research on automated build failure fixing [35,
50, 51] and dependency conflict detection [25, 28] for DL compiler
bugs.

Finding 8: Type Problem and Incorrect Optimization Code
Logic are common root causes of DL compiler bugs. They
can induce all kinds of buggy symptoms except Build Fail-
ure, which is mostly exhibited by Incorrect Configuration
and Incompatibility bugs.

From Table 6, Crash and Wrong Code are the most common
symptoms of DL compiler bugs. Both can be induced by all cate-
gories of root causes except two (i.e., Incorrect Configuration and
Typo for Wrong Code). Therefore, generating high-quality test or-
acles around the two symptoms can detect a wide variety of DL
compiler bugs. As presented above, Crash has an obvious test ora-
cle, while regarding Wrong Code, differential testing [32] may be a
potentially promising direction, e.g., comparing the output results
from the three DL compilers under the same set of test inputs.

Finding 9: The symptoms of Crash and Wrong Code can
be produced by various root causes of DL compiler bugs.

4.4 RQ4: Bug Prone Stages
Figure 6 presents the bug distribution among the three DL com-
pilation stages. The model loading stage is relatively less buggy
than the two IR transformation stages, which involve sophisticated
IR optimization. Unlike TVM and Glow, the high-level IR trans-
formation (73.28%) of nGraph is significantly more buggy than its
low-level IR transformation (22.41%). This is because nGraph does
not have its own low-level IR design. Instead, its low-level IR trans-
formation integrates existing kernel libraries or coordinates with
PlainML for hardware-specific optimizations as explained in Sec-
tion 2. Through further analysis, Incorrect Code Logic (especially
Incorrect Optimization Code Logic) is the most frequent root cause
for both high-level IR transformation and low-level IR transforma-
tion stages. Due to a large number of DL compiler bugs induced
by IR optimization, a variant of differential testing (i.e., Different
Optimization Levels (DOL) method [14]) may be adapted to de-
tect optimization-related bugs, which compares the results under
different optimizations. Here, the characteristics of multi-level IR
optimization in DL compilers should be considered.

https://github.com/pytorch/glow/pull/4949
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Table 6: Relationship between Root Causes and Symptoms.

Root Causes
Symptoms Crash Wrong Code Bad Performance Build Failure Hang Unreported Totalsymptom

Type Problem 75 29 1 3 1 7 116
Incorrect Code Logic 41 43 8 - 3 7 102
Tensor Shape Problem 54 24 1 - - 1 80
API Misuse 38 19 1 - - 1 59
Incorrect Exception Handling 51 6 - - 1 - 58
Misconfiguration 1 - - 40 - 1 42
Incompatibility 29 5 - 5 - 2 41
Incorrect Assignment 23 8 - - - 5 36
Incorrect Numerical Computation 11 11 - - - 1 23
Others 13 2 - 2 - - 17
Typo 13 1 - - - 2 16
Concurrency 9 3 - - - 1 13

Totalcauses 358 151 11 50 5 28 603

38.05%

36.36%

25.59%

TVM

35.16%

37.5%

27.34%

Glow

73.28%

22.41%
4.31%

nGraph

Model Loading High−Level IR Transformation Low−Level IR Transformation

Figure 6: Bugs across Stages of the DL Compiler Pipeline

Finding 10: The high-level IR transformation stage
(44.92%) and the low-level IR transformation stage (33.64%)
are relatively more buggy than the model loading stage
(21.44%) on average.

Figure 6 shows that a significant number of DL compiler bugs
occur at the model loading stage, which plays a role analogous
to the front end in traditional compilers. It differs from the prior
findings [11, 14, 44, 60] that front-end bugs are rare in traditional
compilers (e.g., GCC and LLVM). It is because the model loading
stage, unlike traditional front ends, needs to handle inputs in multi-
ple representations adopted by various DL frameworks. Moreover,
the model loading stage needs to deal with various operators (e.g.,
convolution and pooling) supported by each DL framework when
transforming an input model into high-level IR. In particular, dif-
ferent from stable front ends of traditional compilers, more and
more DL operators can be proposed and developed, and thus DL
compilers need to continually support them, which could incur
new bugs at the model loading stage. As a result, the model loading
stage requires handling a large number of cases arising from the
data representations and operations supported by fast-evolving DL
frameworks and libraries. We also analyze which DL frameworks
are more often to induce bugs at the model loading stage. Specifi-
cally, through analyzing the front-end bugs in our dataset, there are
108 bugs for which we can identify the corresponding bug-inducing

DL frameworks. We find that 29.63%, 31.48%, 21.3%, 4.63%, 4.63%,
3.7%, 2.78%, 1.85% of bugs arose from ONNX, PyTorch, TensorFlow,
Keras, TFLite, MXNET, CoreML, and Caffe2 respectively. This in-
dicates that it is important to consider inputs from different DL
frameworks in designing tests for the model loading stage.

Finding 11: Unlike traditional compilers, a significant pro-
portion of bugs (21.44% on average across the three DL
compilers) occur at the model loading stage.

4.5 RQ5: Commonality
To measure the commonality across DL compilers, we calculated
the Spearman correlation between each pair of DL compilers in
terms of root cause distribution and symptom distribution. Spear-
man’s correlation coefficient is a statistical measure of the strength
of a monotonic relationship between two paired variables [72]. Fig-
ure 7 shows the correlation results. We find that all the correlation
coefficients are larger than 0.74 in terms of root causes, and all the
correlation coefficients are 1 in terms of symptoms. This demon-
strates that the three DL compilers share a very high degree of
commonality in the root causes and symptoms of bugs. It suggests
the generalizability of the findings in this study as well as the feasi-
bility to develop solutions that can be generalized to different DL
compilers for the detection, localization, and fixing of DL compiler
bugs.

Finding 12: The three DL compilers share significant com-
monality in the root causes and symptoms of bugs.

5 DISCUSSION
5.1 Implications
We discuss the implications on the detection and debugging of DL
compiler bugs according to our findings.



A Comprehensive Study of Deep Learning Compiler Bugs ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

0.7 0.8 0.9 1

TVM

Glow

nGraph

TVM

Glow

nGraph

1

0.8

0.74

1

0.76 1

(a) Root Causes Correlation

0.7 0.8 0.9 1

TVM

Glow

nGraph

TVM

Glow

nGraph

1

1

1

1

1 1

(b) Symptoms Correlation

Figure 7: Correlation among DL compilers

According to Findings 1 and 3, a large proportion of bugs are
related to the type and shape of tensors in DL computation. There-
fore, new criteria can be defined to measure the test coverage of tensor
type and tensor shape. Existing mutation-based coverage [40] can
be adapted to include representative mutation operators on tensor
type and shape accordingly. For example, we find that DL compilers
are more fragile in implicit type conversion, data layout transforma-
tion, and tensor shapematching. Therefore, newmutation operators
should include 1) adding typecast for a tensor to promote implicit
type conversion in tensor computations, 2) replacing a tensor with
another one with a different layout to trigger data layout trans-
formation, and 3) insert some new layers with diverse shapes to
detect tensor shape mismatching. A large proportion of these bugs
are manifested as crashes. These bugs can be detected if they are
triggered. As such, new methodologies can be developed to search
for effective tests based on the adapted coverage criteria.

According to Findings 5, 6, and 9, Crash and Wrong Code are
the two most common bug symptoms that can be exhibited by DL
compiler bugs due to all kinds of root causes. Even though detecting
crash bugs has an obvious test oracle, the crash messages reported
by many crash bugs are ambiguous. The ambiguity can affect the
localization and fixing of bugs. Analyzing the crash bugs in our
dataset, we find the crash messages of nearly 11% of bugs were
rephrased to provide more information after their fixes. Moreover,
we find some users complained that crash messages are not infor-
mative in their issue reports using the words such as “the error
message is confusing” and “unhelpful error message”. Therefore, it
is necessary for developers to provide precise and informative error
messages, which could facilitate the understanding of crash bugs
and the design of automated localization methods.

Regarding wrong code bugs, it is difficult to define test oracles
to detect them. To facilitate their detection, one potential direc-
tion is to transform some wrong code bugs to crash bugs by adding
more checks (e.g., assertions) in DL compilers. That is, it is important
for researchers to explore where to check and what to check in DL
compilers. Even though this solution could relieve the efforts of
detecting wrong code bugs to some degree, the task of adding asser-
tions manually is non-trivial. Therefore, the design of high-quality
oracle to detect wrong code bugs is still a challenging problem to
the quality assurance of DL compilers. This problem deserves more
attention from the software engineering community.

Findings 2, 8 and 10 suggest that optimization-related bugs occur
frequently and can lead to almost all kinds of symptoms. There-
fore, designing tests that can trigger various optimizations and their

combinations is a promising research direction. In particular, the
mechanism of multi-level optimizations should be considered when
designing tests. Moreover, a large number of optimizations can be
involved during the compilation of a DL model, and thus it is also
useful to design automated localization techniques for identifying
the buggy optimizations to improve the quality of DL compilers.

Finding 4 discusses the differences in the common root causes
(i.e., API Misuse and Incompatibility) between DL compilers and
traditional software systems. The differences show that the two
categories of DL compiler bugs manifest in different ways from
those of traditional software systems. It suggests that different bug
detection strategies should be designed for DL compilers. Specifi-
cally, API misuses in DL compilers are mainly due to invoking the
wrong APIs (64.41% of API Misuse bugs), but existing API-misuse
detection techniques for general software mainly focus on API-
missing/redundancy. Thus, incorporating API-recommendation
knowledge to API-misuse detection for DL compilers is useful,
which could help distinguish usage scenarios of different APIs (even
though they have very similar names) by mining code snippets.
For Incompatibility bugs, 73.17% of them are caused by External In-
compatibility, especially the incompatibility with various DL frame-
works and fundamental system libraries. Therefore, adding version
checks for these third-party libraries is helpful to avoidmany incom-
patibility bugs. Moreover, our dataset of External Incompatibility
bugs may facilitate the research on dependency conflict detection
for DL compilers. Dependency conflict detection has been an im-
portant topic in the software engineering community [25, 28].

As shown in Finding 11, front-end bugs in traditional compilers
are rare, but the number of DL compiler bugs in the model loading
stage (analogous to the front end) is non-trivial due to the diverse
input representations from various DL frameworks. Moreover, dif-
ferent DL frameworks can cause DL compilers to make mistakes
at model loading, as presented in Section 4.4. It suggests that this
stage also deserves attention during the process of DL compiler
bug detection. Meanwhile, it is necessary to consider various DL
frameworks when constructing tests.

5.2 Threats to Validity
Internal Threat. The internal threat to validity mainly lies in
our manual classification and labeling of DL compiler bugs, which
may have subjective bias or errors. To reduce this threat, we re-
ferred to the previous taxonomies of root causes and bug symp-
toms [29, 38, 58, 62, 63] as the initial taxonomies, and then adopted
an open-coding scheme to update the taxonomies to fit DL compiler
bugs. During the labeling process, the first two authors indepen-
dently labeled DL compiler bugs with the supervision of Cohen’s
Kappa coefficient [64]. Any disagreement was discussed with the
third author until a consensus is reached. More details about our
classification and labeling process can be found in Section 3.2.
External Threat. The external threat to validity mainly lies in
the datasets used in our study. To reduce this threat, we system-
atically collected DL compiler bugs as presented in Section 3.1. In
particular, we only considered closed and merged pull requests that
are responsible to fix bugs, since the bugs involved in these pull
requests have been fixed and accepted by developers. To guaran-
tee the generalizability of our study, we used three popular and
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diverse DL compilers as subjects and studied 603 DL compiler bugs
in total by balancing the effort of manual analysis and the study
scale. Moreover, we conducted the analysis about commonality as
presented in Section 4.5, whose results demonstrate the significant
commonality in the root causes and symptoms of bugs across all
the three DL compilers.

6 A PRELIMINARY APPLICATION
In this section, we demonstrate the usefulness of our findings with
a preliminary proof-of-concept application TVMfuzz5, which aims
to generate unit tests for the stage of high-level IR transformation
in TVM based on existing TVM tests. In the preliminary application,
we selected TVM due to its great popularity. Specifically, TVMfuzz
leverages two findings: (a) bugs arising from tensor type and tensor
shape are common and (b) high-level IR transformation is the most
error-prone DL compiler stage. First, TVMfuzz constructs a directed
graph for the calling relationship of those TVM APIs involved in a
set of existing unit tests for the high-level IR transformation stage.
Second, it randomly selects a subgraph, and then constructs a new
unit test by (1) considering legitimate API call dependencies in
this subgraph and (2) randomly mutating the tensor type, tensor
shape, node name, and the primitive value of tensor elements. TVM-
fuzz repeatedly performs the second step until the testing process
terminates.

We applied TVMfuzz to TVM via differential testing and the
test oracle is whether a test produces consistent results between
two TVM versions. We conducted experiments to evaluate the
effectiveness of TVMfuzz by producing new tests based on the
existing tests in TVM v0.7, which is the latest release version of
TVM. We deployed TVMfuzz on TVM v0.7 and v0.8dev (the latest
version under development) for two days, which include the time
to produce and execute the new tests. Finally, TVMfuzz detected 8
crash bugs (further confirming Finding 5 in our study), including 5
bugs in TVM v0.7 and 3 bugs in TVM v0.8dev. Regarding the 5 crash
bugs in TVM v0.7, all of them cannot be detected by the existing
tests in TVM v0.7. The 5 bugs have been fixed in the latest version
under development v0.8dev. This demonstrates that the generated
tests by TVMfuzz are able to effectively augment the existing test
suite. Regarding the 3 crash bugs in TVM v0.8dev, after our manual
inspection, we have submitted them to the TVM developers and
are awaiting their responses. Please note that the false positives
of TVMfuzz are rare, i.e., there is only one false positive in our
experiment via our manual inspection and communication with
TVM developers. Table 7 presents the details of the detected bugs
by TVMfuzz. We found that 3 bugs are caused by Type Problem, 2
bugs are caused by Tensor Shape Problem, and 3 bugs are caused
by Incorrect Exception Handling.

Although this is a preliminary application (a simple testing tool
with short testing time), several bugs have been detected by TVM-
fuzz and these bugs cannot be detected by the original test suite
in the corresponding TVM version. The results demonstrate the
usefulness of our findings. Please note that the effectiveness of
TVMfuzz-generated unit tests depends on the adequacy of existing

5The implementation and results of TVMfuzz can also be found at our project home-
page: https://github.com/ShenQingchao/DLCstudy.

Table 7: Bugs Detected by TVMfuzz

Version Root Cause Status

v0.7 Type Problem Fixed
v0.7 Type Problem Fixed
v0.7 Type Problem Fixed
v0.7 Tensor Shape Problem Fixed
v0.7 Tensor Shape Problem Fixed

v0.8dev Incorrect Exception Handling Awaiting
v0.8dev Incorrect Exception Handling Awaiting
v0.8dev Incorrect Exception Handling Awaiting

unit tests. It is independent of data dimension and complexity as
data are handled by the same API calls in existing unit tests.

7 RELATEDWORK
Empirical Studies on Bugs. There are a number of empirical
studies on bugs in the literature [26, 29, 34, 37–39, 48, 52, 60, 62, 65,
76, 78]. The most related ones to ours are the empirical studies on
traditional compiler bugs. For example, Sun et al. [60] conducted an
empirical study to analyze the duration, priority, fixes, test cases,
and locations of GCC and LLVM bugs. Zhou et al. [78] conducted
an empirical study to investigate the optimization bugs in GCC
and LLVM. Also, there are some empirical studies on DL program
bugs. For example, Islam et al. [38] and Zhang et al. [76] conducted
empirical studies on DL program bugs, such as TensorFlow program
bugs. Jia et al. [39] investigated the bugs inside the TensorFlow
framework. Garcia et al. [29] conducted an empirical study on
the bugs of autonomous vehicles (a kind of important DL-based
applications). Humbatova et al. [37] studied the taxonomy of DL
programs bugs, which includes layer-related and training-related
categories. In addition, there are somework onDL testing, including
DL model testing [19, 67], DL program testing [69, 77], and DL
library testing [54, 66].

Furthermore, there are also many studies on bugs in other soft-
ware systems. For example, Lu et al. [52] conducted an empirical
study on concurrency bugs. Franco et al. [26] conducted an empiri-
cal study on numerical bugs. Han and Yu [34] studied the perfor-
mance bugs of highly configurable software systems, and Wan et
al. [65] characterized the bugs of blockchain systems.

Different from the previous studies, we target DL compiler bugs.
As presented in Section 2, DL compilers have different character-
istics from traditional compilers (e.g., GCC and LLVM). Moreover,
DL compilers are one of the most important infrastructures for
deep learning, which have different roles and characteristics with
DL programs and DL frameworks. Specifically, DL compilers take
trained DL models as inputs. Our taxonomy includes DL-compiler
specific categories, e.g., node-type problem (DL compilers need
determine node type before many operations) and incorrect op-
timization code logic (DL compilers enact specific optimizations
customized to various hardware). To our best knowledge, we are
the first to characterize DL compiler bugs.
Traditional Compiler Bugs. Besides the above mentioned em-
pirical studies on traditional compiler bugs, there are a number of
studies on testing and localizing traditional compiler bugs in the

https://github.com/ShenQingchao/DLCstudy
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literature [12–18, 21, 23, 27, 31, 44, 45, 49, 55, 59, 71, 74] For exam-
ple, Yang et al. [71] developed Csmith, the most widely-used C test
program generation tool, to test C compilers. Le et al. [44] proposed
EMI, which relies on a pair of equivalent test programs under a
set of inputs, to test C compilers. Chen et al. [13] proposed DiWi
to localize the buggy compiler file by generating a set of effective
witness test programs. Also, Regehr et al. [55] proposed CReduce
to reduce a bug-triggering test program to a minimal one that is
still able to trigger the compiler bug.

Different from them, our work focuses on DL compilers rather
than traditional compilers. Due to their significant differences (pre-
sented in Section 2), the existing testing and debugging methods in
traditional compilers cannot be directly applied to DL compilers.
That is, there is no work directly targeting DL compiler testing and
debugging. Therefore, as the first empirical study on DL compiler
bugs, we believe that our work is helpful to design effective testing
and debugging methods specific to DL compilers. In particular, we
have conducted the first attempt to design a simple TVM testing
tool TVMfuzz according to our findings, and our preliminary study
demonstrates the effectiveness of TVMfuzz by detecting 8 crash
bugs that cannot be detected by existing tests in the corresponding
TVM version.

8 CONCLUSION
DL compilers can significantly alleviate the burden of deploying
and optimizing DL models programmed on top of various DL frame-
works to various hardware, and have been become one of the most
fundamental and important software infrastructures in DL. How-
ever, it is inevitable for them to have bugs, like traditional compilers.
Their bugs could be propagated to DL models compiled by them
and produce unexpected, even dangerous, model behaviors during
the real model usage. Therefore, it is necessary to guarantee the
quality of DL compilers. In this paper, we conducted the first com-
prehensive study to understand DL compiler bugs so as to promote
the design of effective bug detection and debugging techniques.
Specifically, we manually studied 603 bugs from three popular and
diverse DL compilers (i.e., TVM, Glow, and nGraph), identified 12
root causes and 6 bug symptoms, and obtained 12 major findings.
Based on these findings, we provide a series of guidelines for DL
compiler bug detection and debugging in the future, and make
the first attempt to design a simple but effective TVM testing tool
(i.e., TVMfuzz). During the testing period of two days, it generates
new tests based on existing tests in TVM and detects 8 TVM bugs
that cannot be detected by TVM’s original test suite, which can
demonstrate the practical potentials of our findings.
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